Why do buildings collapse in earthquakes? Building for safety in seismic areas

In the past, facilities considered to be at the end of their useful life were demolished and replaced with new ones that better met the functional requirements of modern society, including new safety standards. Humankind has recently recognised the threats to the environment and to our limited natural resources due to our relentless determination to destroy the old and build anew. With the awareness of these constraints and the emphasis on sustainability, in future the majority of old structures will be retrofitted to extend their service life as long as feasible. In keeping with this new approach, the EU’s Construction Products Regulation 305/2011, which is the basis of the Eurocodes, included the sustainable use of resources as an “Essential Requirement” for construction. So, the forthcoming second generation of EN-Eurocodes will cover not only the design of new structures, but the rehabilitation of existing ones as well. Most of the existing building stock and civil infrastructures are seismically deficient. When the time comes for a decision to prolong their service life with the help of structural and architectural upgrading, seismic retrofitting may be needed. Further, it is often decided to enhance the earthquake resistance of facilities that still meet their functional requirements and fulfil their purpose, if they are not earthquake-safe. In order to decide how badly a structure needs seismic upgrading or to prioritise it in a population of structures, a seismic evaluation is needed, which also serves as a guide for the extent and type of strengthening. Seismic codes do not sufficiently cover the delicate phase of seismic evaluation nor the many potential technical options for seismic upgrading; therefore research is on-going and the state-of-the-art is constantly evolving. All the more so as seismic evaluation and rehabilitation demand considerable expertise, to make best use of the available safety margins in the existing structure, to adapt the engineering capabilities and techniques at hand to the particularities of a project, to minimise disruption of use, etc. Further, as old structures are very diverse in terms of their materials and layout, seismic retrofitting does not lend itself to straightforward codified procedures or cook-book approaches. As such, seismic...
evaluation and rehabilitation need the best that the current state-of-the-art can offer on all aspects of earthquake engineering. This volume serves this need, as it gathers the most recent research of top seismic experts from around the world on seismic evaluation, retrofitting and closely related subjects.

Structural Analysis of Historical Constructions: Anamnesis, Diagnosis, Therapy, Controls

The five-volume set LNCS 9786-9790 constitutes the refereed proceedings of the 16th International Conference on Computational Science and Its Applications, ICCSA 2016, held in Beijing, China, in July 2016. The 239 revised full papers and 14 short papers presented at 33 workshops were carefully reviewed and selected from 849 submissions. They are organized in five thematic tracks: computational methods, algorithms and scientific applications; high performance computing and networks; geometric modeling, graphics and visualization; advanced and emerging applications; and information systems and technologies.

Dynamic Response of Infrastructure to Environmentally Induced Loads

Engineering dynamics and vibrations has become an essential topic for ensuring structural integrity and operational functionality in different engineering areas. However, practical problems regarding dynamics and vibrations are in many cases handled without success despite large expenditures. This book covers a wide range of topics from the basics to advances in dynamics and vibrations; from relevant engineering challenges to the solutions; from engineering failures due to inappropriate accounting of dynamics to mitigation measures and utilization of dynamics. It lays emphasis on engineering applications utilizing state-of-the-art information.

Earthquake Engineering

Provides a three-tiered process for seismic evaluation of existing buildings in any level of seismicity. This standard is intended to serve as a nationally applicable tool for design professionals, code officials, and building owners looking to seismically evaluate existing buildings. It considers various aspects of building performance.

Seismic Behaviour and Design of Irregular and Complex Civil Structures

Seismic Evaluation and Rehabilitation of Structures

Learn from the personal experience and insights of leading earthquake engineering specialists as they examine the lessons from disasters of the last 30 years and propose a path to earthquake safety worldwide. Why Do Buildings Collapse in Earthquakes?: Building for Safety in Seismic Areas delivers an insightful and comprehensive analysis of the key lessons taught by building failures during earthquakes around the world. The book uses empirical evidence to describe the successes of earthquake engineering and disaster preparedness, as well as the failures that may have had tragic consequences. Readers will learn what makes buildings in earthquake zones vulnerable, what can be done to design, build and maintain those buildings to reduce or eliminate that vulnerability, and what can be done to protect building occupants. Those who are responsible for the lives and safety of building occupants and visitors - architects, designers, engineers, and building owners or managers - will learn how to provide adequate safety in earthquake zones. The text offers useful and accessible answers to anyone interested in natural disasters generally and those who have specific concerns about the impact of earthquakes on the built environment. Readers will benefit from the inclusion of: A thorough introduction to how buildings have behaved in earthquakes, including a description of the world’s most lethal earthquakes and the fatality trend over time. An exploration of how buildings are constructed around the world,
including considerations of the impact of climate and seismicity on home design. A discussion of what happens during an earthquake, including the types and levels of ground motion, landslides, tsunamis, and sequential effects, and how different types of buildings tend to behave in response to these phenomena. What different stakeholders can do to improve the earthquake safety of their buildings. The owners and managers of buildings in earthquake zones and those responsible for the safety of people who occupy or visit them will find Why Do Buildings Collapse in Earthquakes? Building for Safety in Seismic Areas essential reading, as will all architects, designers and engineers who design or refurbish buildings in earthquake zones.

Structures and Infrastructure Systems

This book contains the best contributions presented during the 6th National Conference on Earthquake Engineering and the 2nd National Conference on Earthquake Engineering and Seismology - 6CNIS & 2CNISS, that took place on June 14-17, 2017 in Bucharest - Romania, at the Romanian Academy and Technical University of Civil Engineering of Bucharest. The book offers an updated overview of seismic hazard and risk assessment activities, with an emphasis on recent developments in Romania, a very challenging case study because of its peculiar intermediate-depth seismicity and evolutive code-compliant building stock. Moreover, the book collects input of renowned scientists and professionals from Germany, Greece, Italy, Japan, Netherlands, Portugal, Romania, Spain, Turkey and United Kingdom. The content of the book focuses on seismicity of Romania, geotechnical earthquake engineering, structural analysis and seismic design regulations, innovative solutions for seismic protection of building structures, seismic risk evaluation, resilience-based assessment of structures and management of emergency situations. The sub-chapters consist of the best papers of 6CNIS & 2CNISS selected by the International Advisory and Scientific Committees. The book is targeted at researchers and experts in seismic hazard and risk, evaluation and rehabilitation of buildings and structures, insurers and re-insurers, and decision makers in the field of emergency situations and recovery activities.

Seismic Assessment and Rehabilitation of Existing Buildings

This book is a printed edition of the Special Issue Reducing the Seismic Vulnerability of Existing Buildings: Assessment and Retrofit that was published in Buildings.

Evaluation of Earthquake Damaged Concrete and Masonry Wall Buildings

Seismic Evaluation of Existing Buildings

Fundamentals of Earthquake Engineering

This book gathers the best peer-reviewed papers presented at the Italian Concrete Days national conference, held in Lecco, Italy, on June 14-15, 2018. The conference topics encompass the aspects of design, execution, rehabilitation and control of concrete structures, with particular reference to theory and modeling, applications and realizations, materials and investigations, technology and construction techniques. The contributions amply demonstrate that today's structural concrete applications concern not only new constructions, but more and more rehabilitation, conservation, strengthening and seismic upgrading of existing premises, and that requirements cover new aspects within the frame of sustainability, including environmental friendliness, durability, adaptability and reuse of works and / or materials. As such the book represents an invaluable, up-to-the-minute tool, providing an essential overview of structural concrete, as well as all new materials with cementitious matrices.
Our knowledge to model, design, analyse, maintain, manage and predict the life-cycle performance of infrastructure systems is continually growing. However, the complexity of these systems continues to increase and an integrated approach is necessary to understand the effect of technological, environmental, economic, social, and political interactions on the life-cycle performance of engineering infrastructure. In order to accomplish this, methods have to be developed to systematically analyse structure and infrastructure systems, and models have to be formulated for evaluating and comparing the risks and benefits associated with various alternatives. Civil engineers must maximize the life-cycle benefits of these systems to serve the needs of our society by selecting the best balance of the safety, economy, resilience and sustainability requirements despite imperfect information and knowledge. Within the context of this book, the necessary concepts are introduced and illustrated with applications to civil and marine structures. This book is intended for an audience of researchers and practitioners world-wide with a background in civil and marine engineering, as well as people working in infrastructure maintenance, management, cost and optimization analysis. The chapters originally published as articles in Structure and Infrastructure Engineering.

Seismic Vulnerability of Existing Buildings

This text details the proceedings of the 11th European Conference on Earthquake Engineering. CD-ROM contains full text of the 650 papers in printed form. This would have been 6 volumes of 1000 pages each. Topics covered: are: Engineering seismology; Experimental aspects for soils, rocks and construction material; Computational aspects for materials, structures and soil-structure interaction; Civil engineering projects; Active and passive isolation; Industrial facilities, lifelines and equipment; Vulnerability, seismic risk and strengthening; Site effects and spatial variability of seismic motions; Reliability analyses and probabilistic aspects; Design criteria, codes and standards; Eurocode 8 and national applications; Seismic risk in the Mediterranean basin; Post earthquake investigations;

Risk Analysis XII

The present volume contains a total of 23 papers centred on the research area of Seismic Assessment and Rehabilitation of Existing Buildings. This subject also forms the core of Project SfP977231, sponsored by the NATO Science for Peace Office and supported by the Scientific and Technical Research Council of Turkey [TUBIT AK]. Most of these papers were presented by the authors at a NATO Science for Peace Workshop held in Izmir on 13 - 14 May, 2003 and reflect a part of their latest work conducted within the general confines of the title of the NATO Project. Middle East Technical University, Ankara, Turkey serves as the hub of Project SfP977231 and coordinates research under the project with universities within Turkey, e. g. Istanbul Technical University and Kocaeli University, and with partner institutions in Greece and the Former Yugoslav Republic of Macedonia: A few articles have also been contributed by invited experts, who are all noted researchers in the field. Altogether, the contents of the volume deal with a vast array of problems in Seismic Assessment and Rehabilitation and cover a wide range of possible solutions, techniques and proposals. It is intended to touch upon many of these aspects separately below. Earthquakes constitute possibly the most widely spread and also the most feared of natural hazards. Recent earthquakes within the first six months of 2003, such as the Bingol Earthquake in Turkey and the Algerian earthquake, have caused both loss of life and severe damage to property.

Eurocode-Compliant Seismic Analysis and Design of R/C Buildings

Following the two damaging California earthquakes in 1989 (Loma Prieta) and 1994 (Northridge), many concrete wall and masonry wall buildings were repaired using federal disaster assistance funding. The repairs were based on inconsistent criteria, giving rise to controversy regarding criteria for the repair of cracked concrete and masonry wall buildings. To help resolve this controversy, the Federal Emergency Management Agency (FEMA) initiated a project on evaluation and repair of earthquake damaged concrete and masonry wall buildings.
in 1996. The ATC-43 project addresses the investigation and evaluation of earthquake damage and discusses policy issues related to the repair and upgrade of earthquake damaged buildings. The project deals with buildings whose primary lateral-force-resisting systems consist of concrete or masonry bearing walls with flexible or rigid diaphragms, or whose vertical-load-bearing systems consist of concrete or steel frames with concrete or masonry infill panels. The intended audience is design engineers, building owners, building regulatory officials, and government agencies. The project results are reported in three documents. The FEMA 306 report, Evaluation of Earthquake Damaged Concrete and Masonry Wall Buildings, Basic Procedures Manual, provides guidance on evaluating damage and analyzing future performance. Included in the document are component damage classification guides, and test and inspection guides. FEMA 307, Evaluation of Earthquake Damaged Concrete and Masonry Wall Buildings, Technical Resources, contains supplemental information including results from a theoretical analysis of the effects of prior damage on single-degree-of-freedom mathematical models, additional background information on the component guides, and an example of the application of the basic procedures. FEMA 308, The Repair of Earthquake Damaged Concrete and Masonry Wall Buildings, discusses the policy issues pertaining to the repair of earthquake damaged buildings and illustrates how the procedures developed for the project can be used to provide a technically sound basis for policy decisions. It also provides guidance for the repair of damaged components.

Advances in Geotechnics and Structural Engineering

By presenting the work of the RILEM Technical Committee 245-RTE, the book provides an overview of the existing techniques for the reinforcement of timber elements, joints and structures. It consists of two parts: part I examines state-of-the-art information on reinforcement techniques, summarizes the current status of standardization, and covers STS, GiR, FRP and nanotechnology. In part II several applications of reinforcement are discussed: these include traditional structures, traditional timber frame walls, light-frame shear walls, roofs, floors, and carpentry joints. The book will benefit academics, practitioners, industry and standardization committees interested in the reinforcement of existing timber elements, joints and structures.

Engineering Dynamics and Vibrations

Bearing in mind that reinforced concrete is a key component in a majority of built environment structures, Concrete Buildings in Seismic Regions combines the scientific knowledge of earthquake engineering with a focus on the design of reinforced concrete buildings in seismic regions. This book addresses practical design issues, providing an integrated, comprehensible, and clear presentation that is suitable for design practice. It combines current approaches to seismic analysis and design, with a particular focus on reinforced concrete structures, and includes: an overview of structural dynamics analysis and design of new R/C buildings in seismic regions post-earthquake damage evaluation, pre earthquake assessment of buildings and retrofitting procedures seismic risk management of R/C buildings within urban nuclei extended numerical example applications Concrete Buildings in Seismic Regions determines guidelines for the proper structural system for many types of buildings, explores recent developments, and covers the last two decades of analysis, design, and earthquake engineering. Divided into three parts, the book specifically addresses seismic demand issues and the basic issues of structural dynamics, considers the "capacity" of structural systems to withstand seismic effects in terms of strength and deformation, and highlights existing R/C buildings under seismic action. All of the book material has been adjusted to fit a modern seismic code and offers in-depth knowledge of the background upon which the code rules are based. It complies with the last edition of European Codes of Practice for R/C buildings in seismic regions, and includes references to the American Standards in effect for seismic design.

Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-frame Buildings

Papers from a May 2003 workshop, 23 in all, describe methods for seismic assessment and rehabilitation of existing buildings. The velocity of displacement, preliminary seismic vulnerability assessment of existing reinforced concrete buildings in Turkey, and parameters affecting
damageability of reinforced concrete members are some areas discussed. Other areas examined include estimation of earthquake damage
probabilities for reinforced concrete buildings, condition assessment techniques used for non-buildings structures, simple survey
procedures for seismic risk assessment in urban building stocks, earthquake engineering and seismic rehabilitation in Colombia, seismic
retrofit of reinforced concrete structures, and experimental and analytical investigation of 1/3-model R/C frame-wall building structures.

Reinforcement of Timber Elements in Existing Structures

Bearing in mind that reinforced concrete is a key component in a majority of built environment structures, Concrete Buildings in Seismic
Regions combines the scientific knowledge of earthquake engineering with a focus on the design of reinforced concrete buildings in seismic
regions. This book addresses practical design issues, providing an integrated, comprehensible, and clear presentation that is suitable for
design practice. It combines current approaches to seismic analysis and design, with a particular focus on reinforced concrete structures,
and includes an overview of structural dynamics analysis and design of new R/C buildings in seismic regions post-earthquake damage
evaluation, pre-earthquake assessment of buildings and retrofitting procedures seismic risk management of R/C buildings within urban nuclei
extended numerical example applications Concrete Buildings in Seismic Regions determines guidelines for the proper structural system for
many types of buildings, explores recent developments, and covers the last two decades of analysis, design, and earthquake engineering.
Divided into three parts, the book specifically addresses seismic demand issues and the basic issues of structural dynamics, considers the
"capacity" of structural systems to withstand seismic effects in terms of strength and deformation, and highlights existing R/C buildings
under seismic action. All of the book material has been adjusted to fit a modern seismic code and offers in-depth knowledge of the
background upon which the code rules are based. It complies with the last edition of European Codes of Practice for R/C buildings in
seismic regions, and includes references to the American Standards in effect for seismic design.

Structural Engineering Compendium I

Structural Analysis of Historical Constructions. Anamnesis, diagnosis, therapy, controls contains the papers presented at the 10th
International Conference on Structural Analysis of Historical Constructions (SAHC2016, Leuven, Belgium, 13-15 September 2016). The main
theme of the book is "Anamnesis, Diagnosis, Therapy, Controls", which emphasizes the importance of all steps of a restoration process in
order to obtain a thorough understanding of the structural behaviour of built cultural heritage. The contributions cover every aspect of
the structural analysis of historical constructions, such as material characterization, structural modelling, static and dynamic
monitoring, non-destructive techniques for on-site investigation, seismic behaviour, rehabilitation, traditional and innovative repair
techniques, and case studies. The knowledge, insights and ideas in Structural Analysis of Historical Constructions. Anamnesis, diagnosis,
therapy, controls make this book of abstracts and the corresponding, digital full-colour conference proceedings containing the full papers
must-have literature for researchers and practitioners involved in the structural analysis of historical constructions.

Seismic Analysis and Retrofitting of Historical Buildings

Updated and expanded edition including new chapters on the cutting edge research areas of soil structure interaction (SSI) and fragility
formulations Earthquake Engineering: From Source to Fragility, 2nd Edition combines aspects of engineering seismology, structural and
geotechnical earthquake engineering to assemble the vital components required for a deep understanding of response of structures to
earthquake ground motion: from the seismic source to the evaluation of actions and deformation required for design. Basic concepts for
accounting for the effects of soil-structure interaction effects in seismic design and assessment are covered in detail. Also included is
material on the nature of earthquake sources and mechanisms, various methods for the characterization of earthquake input motion, effects
of soil-structure interaction, damage observed in reconnaissance missions, modeling of structures for the purposes of response simulation,
Download Ebook Seismic Assessment Of Existing R C Framed Structures

With

definition of performance limit states, fragility curve derivations, structural and architectural systems for optimal seismic response, and action and deformation quantities suitable for design. Earthquake Engineering: From Source to Fragility, 2nd Edition has been updated to include two new chapters. The first on soil structure interaction (SSI) illustrates the factors affecting the SSI and the effects of SSI on ground motion and comprehensively discusses the existing models for soil and foundation systems. The second new chapter deals with fragility formulations, a topic which is at the cutting-edge of modern seismic risk assessment. This book is accompanied by a website containing a comprehensive set of slides illustrating the chapters and appendices, as well as a set of problems with solutions and worked-through examples. Updated and expanded edition including new chapters on the cutting-edge research areas of soil structure interaction (SSI) and fragility formulations Combines aspects of engineering seismology, structural and geotechnical earthquake engineering to provide a comprehensive understanding of the response of structures to earthquake ground motion Each chapter is written within the framework from source (of earthquakes) to societal consequences Accompanied by a website hosting slides, problem sets with solutions and worked-through examples A reference for practising structural engineers and architects, building code developers. Graduate students in earthquake, geotechnical and structural engineering departments.

Recommended Seismic Evaluation and Upgrade Criteria for Existing Welded Steel Moment-Frame Buildings

Structural evaluation and seismic vulnerability assessment of Reinforced Concrete (R/C) buildings have especially become the focus of many researches in Turkey and abroad especially after the August 17, 1999 earthquake causing major life and property losses. A devastating earthquake being expected in Istanbul-Marmara region raises many questions on how well the existing buildings are constructed and whether they can stand a major earthquake. Evaluation of existing buildings for seismic vulnerability requires time consuming input preparation (pre-processing), modelling, and post processing of analysis results. The objective of the study is to perform automated seismic vulnerability assessment of existing R/C buildings automatically over the internet by asking internet users to enter their building related data, and streamlining the modelling-analysis-reporting phases by intelligent programming. The internet based assessment tool is prepared for two levels of complexity: (a) the detailed level targets to carry out seismic evaluation of the buildings using a linear structural analysis software developed for this study.

Concrete Buildings in Seismic Regions

This book presents the fundamentals of strengthening and retrofitting approaches, solutions and technologies for existing structures. It addresses in detail specific techniques for the strengthening of traditional constructions, reinforced concrete buildings, bridges and their foundations. Finally, it discusses issues related to standards and economic decision support tools for retrofitting.

Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures

Seismic Vulnerability Assessment of Civil Engineering Structures at Multiple Scales: From Single Buildings to Large-Scale Assessment provides an integrated, multiscale platform for fundamental and applied studies on the seismic vulnerability assessment of civil engineering structures, including buildings with different materials and building typologies. The book shows how various outputs obtained from different scales and layers of assessment (from building scale to the urban area) can be used to outline and implement effective risk mitigation, response and recovery strategies. In addition, it highlights how significant advances in earthquake engineering research have been achieved with the rise of new technologies and techniques. The wide variety of construction and structural systems associated with the complex behavior of their materials significantly limits the application of current codes and building standards to the existing building stock, hence this book is a welcomed guide on new construction standards and practices. Provides the theoretical backgrounds on the most advanced seismic vulnerability assessment approaches at different scales and for most common building typologies Covers the most common building typologies and the materials they are made from, such as concrete, masonry, steel, timber and raw earth Presents practical
guidelines on how the outputs coming from such approaches can be used to outline effective risk mitigation and emergency planning strategies.

Proceedings of Italian Concrete Days 2018

In order to assess the seismic risk for Switzerland, and particularly for the city of Basel, a joint project on the subject of "Earthquake Scenarios for Switzerland" was launched by the Swiss Seismological Service (SED) and the Institute of Structural Engineering (IBK) at the ETH Zurich. The goals of the study are to improve the assessment of seismic hazard, to investigate the vulnerability of the built environment and finally, to combine the results to elaborate risk scenarios as the first fundamental step in the mitigation process. The objective of this work is the evaluation of the seismic vulnerability of existing buildings with a focus on the residential building stock in the city of Basel. Since no major damaging earthquake has occurred in Switzerland in recent times, vulnerability functions from observed damage patterns are not available. A simple evaluation method based on engineering models of the building structures suitable for the evaluation of a larger number of buildings is therefore proposed.

Comprehensive Earthquake Preparedness Planning Guidelines

Computational Science and Its Applications - ICCSA 2016

Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures contains the plenary lectures and papers presented at the 11th International Conference on STRUCTURAL SAFETY AND RELIABILITY (ICOSSAR2013, New York, NY, USA, 16-20 June 2013), and covers major aspects of safety, reliability, risk and life-cycle performance of structures.

Advances and Trends in Structural Engineering, Mechanics and Computation

Irregular engineering structures are subjected to complicated additional loads which are often beyond conventional design models developed for traditional, simplified plane models. This book covers detailed research and recent progress in seismic engineering dealing with seismic behaviour of irregular and set-back engineering structures. Experimental results as well as special topics of modern design are discussed in detail. In addition, recent progress in seismology, wave propagation and seismic engineering, which provides novel, modern modelling of complex seismic loads, is reported. Particular emphasis is placed on the newly developed rotational, seismic ground-motion effects. This book is a continuation of an earlier monograph which appeared in the same Springer series in 2013 (http://www.springer.com/gp/book/9789400753761).

Seismic Assessment and Rehabilitation of Existing Buildings

This book provides an insight on advanced methods and concepts for the design and analysis of structures against earthquake loading. This second volume is a collection of 28 chapters written by leading experts in the field of structural analysis and earthquake engineering. Emphasis is given on current state-of-the-art methods and concepts in computing methods and their application in engineering practice. The book content is suitable for both practicing engineers and academics, covering a wide variety of topics in an effort to assist the timely dissemination of research findings for the mitigation of seismic risk. Due to the devastating socioeconomic consequences of seismic events, the topic is of great scientific interest and is expected to be of valuable help to scientists and engineers. The chapters of this volume are extended versions of selected papers presented at the COMPDYN 2011 conference, held in the island of Corfu, Greece, under the auspices
Seismic Behaviour and Design of Irregular and Complex Civil Structures II

This compendium is made up of a selection of the best and most representative papers from a group of Elsevier's structural engineering journals. Selections were made by the journal's editorial teams. The papers appeared in the following journals during 2000: Journal of Constructional Steel Research, P.J. Dowling, J.E. Harding, R. Bjorhovde Thin Walled Structures, J. Loughlan, K.P. Chong Engineering Structures, P.L. Gould Computers and Structures, K.J. Bathe, B.H.V. Topping Construction and Building Materials, M.C. Forde Journal of Wind Engineering & Industrial Aerodynamics, N.P. Jones Marine Structures, P.A. Frieze, A. Mansour, T. Yao Each paper appears in the same format as it was published in the journal; citations should be made using the original journal publication details. It is intended that this compendium will be the first in a series of such collections. A compendium has also been published in the area of geotechnical engineering.

Seismic Vulnerability Assessment of Civil Engineering Structures at Multiple Scales

This book assembles, identifies and highlights the most recent developments in Rehabilitation and retrofitting of historical and heritage structures. This is an issue of paramount importance in countries with great built cultural heritage that also suffer from high seismicity, such as the countries of the eastern Mediterranean basin. Heritage structures range from traditional residential constructions to monumental structures, ancient temples, towers, castles, etc. It is generally recognized that these structures present particular difficulties in seismic response calculation through computer simulation due to the complexity of the structural system which is, generally, inhomogeneous, with several contact problems, gaps/joints, nonlinearities and brittleness in material constituents. This book contains selected papers from the ECCOMAS Thematic Conferences on Computational Methods in Structural Dynamics & Earthquake Engineering (COMPDYN) that were held in Corfu, Greece in 2011 and Kos, Greece in 2013. The Conferences brought together the scientific communities of Computational Mechanics, Structural Dynamics and Earthquake Engineering in an effort to facilitate the exchange of ideas in topics of mutual interest and to serve as a platform for establishing links between research groups with complementary activities.

Strengthening and Retrofitting of Existing Structures

This book comprises select proceedings of the International Conference on Trends and Recent Advances in Civil Engineering (TRACE 2020). The book focuses on the latest research developments in structural engineering, structural health monitoring, rehabilitation and retrofitting of structures, geotechnical engineering, and earthquake-resistant structures. The contents also cover the latest innovations in building repair and maintenance, and sustainable materials for rehabilitation and retrofitting. The contents of this book are useful for students, researchers, and professionals working in structural engineering and allied areas.

Concrete Buildings in Seismic Regions

This book aims to serve as an essential reference to facilitate civil engineers involved in the design of new conventional (ordinary) reinforced concrete (R/C) buildings regulated by the current European EC8 (EN 1998-1:2004) and EC2 (EN 1992-1-1:2004) codes of practice. The book provides unique step-by-step flowcharts which take the reader through all the required operations, calculations, and verification checks prescribed by the EC8 provisions. These flowcharts are complemented by comprehensive discussions and practical explanatory comments on critical aspects of the EC8 code-regulated procedure for the earthquake-resistant design of R/C buildings. Further, detailed analysis and design examples of typical multi-storey three-dimensional R/C buildings are included to illustrate the required steps for achieving designs of real-life structures which comply with the current EC8 provisions. These examples can be readily used as verification tutorials to check the reliability of custom-made computer programs and of commercial Finite Element software developed/used for the design of
Internet Based Seismic Vulnerability Assessment Software Development for R/C Buildings

Structural irregularities are one of the most frequent causes of severe damages in buildings, as evidenced by the numerous earthquakes in recent years. This issue is of particular importance, since real structures are almost all irregular. Furthermore, structural irregularities depend on several factors often very difficult to predict. This book is an essential tool for understanding the problem of structural irregularities and provides the most up-to-date review on this topic, covering the aspects of ground rotations, analysis, design, control and monitoring of irregular structures. It includes 24 contributions from authors of 13 countries, giving a complete and international view of the problem.

Seismic Assessment, Behavior and Retrofit of Heritage Buildings and Monuments

This book provides state of the art coverage of important current issues in the analysis, measurement, and monitoring of the dynamic response of infrastructure to environmental loads, including those induced by earthquake motion and differential soil settlement. The coverage is in five parts that address numerical methods in structural dynamics, soil-structure interaction analysis, instrumentation and structural health monitoring, hybrid experimental mechanics, and structural health monitoring for bridges. Examples that give an impression of the scope of the topics discussed include the seismic analysis of bridges, soft computing in earthquake engineering, use of hybrid methods for soil-structure interaction analysis, effects of local site conditions on the inelastic dynamic analysis of bridges, embedded models in wireless sensor networks for structural health monitoring, recent developments in seismic simulation methods, and seismic performance assessment and retrofit of structures. Throughout, the emphasis is on the most significant recent advances and new material. The book comprises extended versions of contributions delivered at the DE-GRIE Lab Workshop 2014, held in Thessaloniki, Greece, in November 2014.

Proceedings of Italian Concrete Days 2016

This book gathers the best peer-reviewed papers presented at the Italian Concrete Days national conference, held in Rome, Italy, on October 27-28, 2016. The conference topics encompass the aspects of design, execution, rehabilitation and control of concrete structures, with particular reference to theory and modeling, applications and realizations, materials and investigations, technology and construction techniques. The contributions amply demonstrate that today’s structural concrete applications concern not only new constructions, but more and more rehabilitation, conservation, strengthening and seismic upgrading of existing premises, and that requirements cover new aspects within the frame of sustainability, including environmental friendliness, durability, adaptability and reuse of works and / or materials. As such the book represents an invaluable, up-to-the-minute tool, providing an essential overview of structural concrete, as well as all new materials with cementitious matrices.

Reducing the Seismic Vulnerability of Existing Buildings Assessment and Retrofit

Evaluation of Earthquake Damaged Concrete and Masonry Wall Buildings
2nd fib Congress in Naples Italy Vol1

Advances and Trends in Structural Engineering, Mechanics and Computation features over 300 papers classified into 21 sections, which were presented at the Fourth International Conference on Structural Engineering, Mechanics and Computation (SEMC 2010, Cape Town, South Africa, 6-8 September 2010). The SEMC conferences have been held every 3 years in

Seismic Hazard and Risk Assessment

Current events help to emphasise the importance of the analysis and management of risk to planners and researchers around the world. Natural hazards such as floods, earthquakes, landslides, fires and others have always affected human societies. The more recent emergence of the importance of man-made hazards is a consequence of the rapid technological advances made in the last few centuries. The interaction of natural and anthropogenic risks adds to the complexity of the problems. Presented at the 12th International Conference on Risk Analysis and Hazard Mitigation, the included research works cover a variety of topics related to risk analysis and hazard mitigation, associated with both natural and anthropogenic hazards.

Copyright code: 88255220fd4df74cba3d06c6f72996bd