The comprehensive resource on reactive power compensation, presenting the design, application and operation of reactive power equipment and installations The area of reactive power compensation is gaining increasing importance worldwide. If suitably designed, it is capable of improving voltage quality significantly, meaning that losses in equipment and power systems are reduced, the permissible loading of equipment can be increased, and the over-all stability of system operation improved. Ultimately, energy use and CO2 emission are reduced. This unique guide discusses the effects of reactive power on generation, transmission and distribution, and looks at the compensation of existing installations in detail. It outlines methods for determination of reactive power and answers the questions that arise when controlling it, for example, at parallel operation with generators. There is also a chapter devoted to installation, maintenance and disturbances. Key features include: A concise overview as well as deep specific knowledge on the segment power factor regulation and network quality Theory of reactive power compensation coupled with typical application examples such as car manufacturing, metal rolling and chemical works Chapter summaries with charts explaining how to put the theory into practice Coverage on the cost-saving aspects of this technology, including the efficient use of energy and the reduction of CO2 A practical guide for electrical engineers and technicians in utilities, this is also essential reading for maintenance engineers, designers, electrical contractors, manufacturing companies, and researchers, also those in industry and planning agencies. Insightful and clear, the book will also appeal to senior undergraduate and graduate electrical engineering students and professors.

The comprehensive resource on reactive power compensation, presenting the design, application and operation of reactive power equipment and installations The area of reactive power compensation is gaining increasing importance worldwide. If suitably designed, it is capable of improving voltage quality significantly, meaning that losses in equipment and power systems are reduced, the permissible loading of equipment can be increased, and the over-all stability of system operation improved. Ultimately, energy use and CO2 emission are reduced. This unique guide discusses the effects of reactive power on generation, transmission and distribution, and looks at the compensation of existing installations in detail. It outlines methods for determination of reactive power and answers the questions that arise when controlling it, for example, at parallel operation with generators. There is also a chapter devoted to installation, maintenance and disturbances. Key features include: A concise overview as well as deep specific knowledge on the segment power factor regulation and network quality Theory of reactive power compensation coupled with typical application examples such as car manufacturing, metal rolling and chemical works Chapter summaries with charts explaining how to put the theory into practice Coverage on the cost-saving aspects of this technology, including the efficient use of energy and the reduction of CO2 A practical guide for electrical engineers and technicians in utilities, this is also essential reading for maintenance engineers, designers, electrical contractors, manufacturing companies, and researchers, also those in industry and planning agencies. Insightful and clear, the book will also appeal to senior undergraduate and graduate electrical engineering students and professors.
and chemical works Chapter summaries with charts explaining how to put the theory into practice Coverage on the cost-saving aspects of this technology, including the efficient use of energy and the reduction of CO2 A practical guide for electrical engineers and technicians in utilities, this is also essential reading for maintenance engineers, designers, electrical contractors, manufacturing companies, and researchers, also those in industry and planning agencies. Insightful and clear, the book will also appeal to senior undergraduate and graduate electrical engineering students and professors.

A unified approach to the fundamental principles and practices of reactive power control in AC power systems. Emphasizes voltage control, variable loads, and transmission. Covers high voltage and distribution systems, plus compensation equipment. Includes many practical numerical examples and useful formulas. Deals with real-world problems and solutions.

Microgrid technology is an emerging area, and it has numerous advantages over the conventional power grid. A microgrid is defined as Distributed Energy Resources (DER) and interconnected loads with clearly defined electrical boundaries that act as a single controllable entity concerning the grid. Microgrid technology enables the connection and disconnection of the system from the grid. That is, the microgrid can operate both in grid-connected and islanded modes of operation. Microgrid technologies are an important part of the evolving landscape of energy and power systems. Many aspects of microgrids are discussed in this volume, including, in the early chapters of the book, the various types of energy storage systems, power and energy management for microgrids, power electronics interface for AC & DC microgrids, battery management systems for microgrid applications, power system analysis for microgrids, and many others. The middle section of the book presents the power quality problems in microgrid systems and its mitigations, gives an overview of various power quality problems and its solutions, describes the PSO algorithm based UPQC controller for power quality enhancement, describes the power quality enhancement and grid support through a solar energy conversion system, presents the fuzzy logic-based power quality assessments, and covers various power quality indices. The final chapters in the book present the recent advancements in the microgrids, applications of Internet of Things (IoT) for microgrids, the application of artificial intelligent techniques, modeling of green energy smart meter for microgrids, communication networks for microgrids, and other aspects of microgrid technologies. Valuable as a learning tool for beginners in this area as well as a daily reference for engineers and scientists working in the area of microgrids, this is a must-have for any library.

Featuring contributions from worldwide leaders in the field, the carefully crafted Electric Power Generation, Transmission, and Distribution, Third Edition (part of the five-volume set, The Electric Power Engineering Handbook) provides convenient access to detailed information on a diverse array of power engineering topics. Updates to nearly every chapter keep this book at the forefront of developments in modern power systems, reflecting international standards, practices, and technologies. Topics covered include: Electric power generation: nonconventional methods Electric power generation: conventional methods Transmission system Distribution systems Electric power utilization Power quality L.L. Grigsby, a respected and accomplished authority in power engineering, and section editors Saifur Rahman, Rama Ramakumar, George Karady, Bill Kersting, Andrew Hanson, and Mark Halpin present substantially new and revised material, giving readers up-to-date information on core areas. These include advanced energy technologies, distributed utilities, load characterization and modeling, and power quality issues such as power system harmonics, voltage sags, and power quality monitoring. With six new and 16 fully revised chapters, the book supplies a high level of detail and, more importantly, a tutorial style of writing and use of photographs and graphics to help the reader understand the material. New chapters cover: Water Transmission Line Reliability Methods High Voltage Direct Current Transmission System Advanced Technology High-Temperature Conduction Distribution Short-Circuit Protection
Both deregulation in the electrical supply industry and the creation of new electricity markets present electric utility companies with the challenge of becoming more efficient without compromising quality of service. Providing new solutions for this newly deregulated paradigm, Power Quality: VAR Compensation in Power Systems presents comprehensive coverage of power quality, harmonics, and static var compensators in one single volume. The book explains how to ensure that power quality is not affected by the harmonics generated by power electronic equipment and explains how to reduce labor costs and increase reliability of supply by employing a single pole autoreclosing scheme. It also addresses how to analyze frequency response of current transformers and voltage transformers while measuring harmonics. Based on the authors' extensive experience in the electric supply industry, Power Quality enables engineers to meet the demands of increased loads, strengthen their transmission systems, and ensure reliable electric supply.

Voltage Stability is a challenging problem in Power Systems Engineering. This book presents a description of voltage instability and collapse phenomena. It intends to propose a uniform and coherent theoretical framework for analysis. It describes practical methods that can be used for voltage security assessment and offers a variety of examples.

Power systems have two components of apparent power: active and reactive power. Both components are necessary for functioning of electrical systems. The active power is the average power absorbed by the resistive load. The reactive power is the measure of energy exchange between the source and reactive power of load. Energy storage devices do not dissipate or supply power, but exchange power with the rest of system. Active power is the one that is converted to other forms of energy in the load yet reactive power is only responsible for magnetizing purposes. Power factor is a ratio depicting how much of the power supplied is real. The reactive current contribute in the value of the overall magnitude of current in transmission lines causing unnecessarily high line currents and low power factor. Since a low power factor means higher amount of apparent power need to be supplied by the utility company, thus the company must also use bigger generators, large transformers and thicker transmission/distribution lines. This requires a higher capital expenditure and operational cost which usually result in the cost being passed to the consumer. In this research, we seek to identify the effects of a low power factor on Swaziland Electricity Company's power supply system and recommend possible solutions to the problem. The results are useful in determining how to optimally deliver power to a load at a power factor that is reasonably close to unity, thus reducing the utility's operational costs while increasing the quality of the service being supplied.
The rapid development of power electronics technology provides opportunities to develop new power equipment to improve the performance of the actual power systems. During the last decade, a number of control devices called "Flexible AC Transmission Systems" (FACTS) technology have been proposed and implemented. FACTS devices can be used for power flow control, loop-flow control, voltage regulation, enhancement of transient stability and damping of power oscillations. FACTS devices can be used as a series controller, shunt controllers or by a combination of both.

Reactive Power Management brings into focus this subject which has assumed importance due to high transmission and distribution losses. Divided into four parts, the book covers the subject in its entirety and enables engineers understand the why, how and what to expect of the problems associated with reactive power. Highlights: Part I: basic concepts and related topics like quality of supply, cost of reactive power, poser tariffs and market forces are included. Part II: Sources which cause, and equipment and transmission lines which suppress, reactive are covered. Part III: Latest developments in the transmission networks, particularly FACTS are discussed. Part IV: Reactive and energy management of residential as well as large industrial consumers like steel, cement, petroleum, paper, mining, textiles, etc. are covered. Richly illustrated with examples, the book will be useful to power utilities, electricity boards and diverse industries, including power, petroleum, cement, glass, coal, etc.

Power systems have two components of apparent power: active and reactive power. Both components are necessary for functioning of electrical systems. The active power is the average power absorbed by the resistive load. The reactive power is the measure of energy exchange between the source and reactive power of load. Energy storage devices do not dissipate or supply power, but exchange power with the rest of system. Active power is the one that is converted to other forms of energy in the load yet reactive power is only responsible for magnetizing purposes. Power factor is a ratio depicting how much of the power supplied is real. The reactive current contribute in the value of the overall magnitude of current in transmission lines causing unnecessarily high line currents and low power factor. Since a low power factor means higher amount of apparent power need to be supplied by the utility company, thus the company must also use bigger generators, large transformers and thicker transmission/distribution lines. This requires a higher capital expenditure and operational cost which usually result in the cost being passed to the consumer. In this research, we seek to identify the effects of a low power factor on Swaziland Electricity Company's power supply system and recommend possible solutions to the problem. The results are useful in determining how to optimally deliver power to a load at a power factor that is reasonably close to unity, thus reducing the utility's operational costs while increasing the quality of the service being supplied.

As the demand for efficient energy sources continues to grow, electrical systems are becoming more essential to meet these increased needs. Electrical generation and transmission plans must remain cost-effective, reliable, and flexible for further future expansion. As these systems are being utilized more frequently, it becomes imperative to find ways of optimizing their overall function. Novel Advancements in Electrical Power Planning and Performance is an essential reference source that provides vital research on the specific challenges, issues, strategies, and solutions that are associated with electrical transmission and distribution systems and features emergent methods and research in the systemic and strategic planning of energy usage. Featuring research on topics such as probabilistic
modeling, voltage stability, and radial distribution, this book is ideally designed for electrical engineers, practitioners, power plant managers, investors, industry professionals, researchers, academicians, and students seeking coverage on the methods and profitability of electrical expansion planning.

This accessible introduction quickly teaches you the fundamentals of reactive power and voltage regulation which is one of the most effective ways to raise the efficiency of modern power systems. Topics include a discussion about the structure of power systems as well as reasons for compensation of reactive power delivered to the customer and means to achieve it. You also read about benefits of voltage regulation and equipment to perform this task. All explanations are supported by numerous drawings, photos of actual equipment and examples with solutions. This book may give you: Voltage And Reactive Power In Distribution System: Reactive Power Formula Reactive Power Compensation: How Reactive Power Is Generated In Transmission Lines How Capacitor Generate Reactive Power: Use Of Reactive Power

This is book use of proposed overview of the state of the art in reactive power compensation technologies. The principles of operations, characteristics and application examples of VAR compensators implemented with switches and self-commutated converters are presented. Static VAR compensators are used to improve voltage regulation, stability. The reactive power component is estimated from the reactive component of input current (Iq).In the proposed work 2-level and 3-level diode-clamped multilevel inverters are studied and then implemented for the applications of reactive power compensation and are simulated by using MATLAB/Simulink for various parameters like Active & Reactive power at load, Per unit input and output voltages. Tabulation can be made for Converter & Load, Active & Reactive powers.

The conference aims to provide a premier platform for Engineers, researchers, scientists and academicians to present their work in the emerging areas such as Renewable Energy, Energy storage, Power Electronics & drives, Smart devices and communication systems, Artificial Intelligence, Robotics, Networks an IoT, Control and automation etc.

Provides insight on both classical means and new trends in the application of power electronic and artificial intelligence techniques in power system operation and control. This book presents advanced solutions for power system controllability improvement, transmission capability enhancement and operation planning. The book is organized into three parts. The first part describes the CSC-HVDC and VSC-HVDC technologies, the second part presents the FACTS devices, and the third part refers to the artificial intelligence techniques. All technologies and tools approached in this book are essential for power system development to comply with the smart grid requirements. Discusses detailed operating principles and diagrams, theory of modeling, control strategies and physical installations around the world of HVDC and FACTS systems. Covers a wide range of Artificial Intelligence techniques that are successfully applied for many power system problems, from planning and monitoring to operation and control. Each chapter is carefully edited, with drawings and illustrations that helps the reader to easily understand the principles of operation or application. Advanced Solutions in Power Systems: HVDC, FACTS, and Artificial Intelligence is written for graduate students, researchers in transmission and distribution networks, and power system operation. This book also serves as a reference for professional software developers and practicing engineers.

This accessible introduction quickly teaches you the fundamentals of reactive power and voltage regulation which is one of the most effective ways to raise the efficiency of modern power systems. Topics include a discussion about the structure of power systems as well as reasons for compensation of reactive power delivered to the customer and means to achieve it. You also read about benefits of voltage regulation and equipment to perform this task. All explanations are supported by numerous drawings, photos of actual equipment and examples with solutions. This book may give you: Voltage And Reactive Power In Distribution System: Reactive Power Formula Reactive Power Compensation: How Reactive Power Is Generated In Transmission Lines How Capacitor Generate Reactive Power: Use Of Reactive Power
This textbook explores reactive power control and voltage stability and explains how they relate to different forms of power generation and transmission. Bringing together international experts in this field, it includes chapters on electric power analysis, design and operational strategies. The book explains fundamental concepts before moving on to report on the latest theoretical findings in reactive power control, including case studies and advice on practical implementation students can use to design their own research projects. Featuring numerous worked-out examples, problems and solutions, as well as over 400 illustrations, Reactive Power Control in AC Power Systems offers an essential textbook for postgraduate students in electrical power engineering. It offers practical advice on implementing the methods discussed in the book using MATLAB and DIgSILENT, and the relevant program files are available at extras.springer.com.