Read Online Infrared Nanophotonics

Infrared Nanophotonics

Infrared Nanophotonics gives a thorough introduction to the principles, techniques, and applications of infrared imaging systems. With its comprehensive coverage and applications orientation, this book provides an ideal tutorial introduction to engineers and scientists interested in applying infrared thermography.

Molecular Vibrations

Infrared spectroscopy is generally understood to mean the science of spectra relating to infrared radiation, namely electromagnetic waves, in the wavelength region occurring immediately between visible light and microwaves. Measurements of infrared spectra have been providing useful information, for a variety of scientific research and industrial studies, for over half a century; this is set to continue in the foreseeable future. Introduction to Experimental Infrared Spectroscopy is intended to be a handy guide for those who have no, or limited, experience in infrared spectroscopic measurements but are utilizing infrared-related methods for their research or in practical applications. Written by leading researchers and experienced practitioners, this work consists of 22 chapters and presents the basic theory, methodology and practical measurement methods, including ATR, photoacoustic, IR imaging, NIR, 2D-COS, and VCD. The six Appendices will aid readers in understanding the concepts presented in the main text. Written in an easy-to-understand way this book is suitable for students, researchers and technicians working with infrared spectroscopy and related methods.

Infrared Radiation

The near infrared spectral radiance measurements of snow and cirrus and cumulus cloud backgrounds taken by the Air Force Geophysics Laboratory's flying laboratory are evaluated. From the analysis of the 124 spectra obtained, the spectral radiances or reflectance characteristics of snow and cirrus and cumulus clouds between 5500 and 7000/cm (1.82-1.43 micrometers were determined. Snow/cloud discrimination can be made by utilizing a sensor in the 5500 to 7000/cm spectral region. Based on the analysis of these data, certain snow/cloud design parameters were identified; that is, slope of the spectral radiance, absolute spectral and/or total radiance, and the location and value of the maximum spectral radiance for the snow and cirrus and cumulus cloud backgrounds. Finally, specific recommendations are made for an optimal operational snow/cloud discrimination radiometer. (Author).

Infrared

It's been nearly 40 years since the last book on infrared heating for food processing was published, and in the meantime, the field has seen significant progress in understanding the mechanism of the infrared (IR) heating of food products and interactions between IR radiation and food components. Infrared Heating for Food and Agricultural Processing presents the latest applications of IR heating technology, focusing on thermal processing of food and agricultural products. Coverage Ranges from Fundamentals to Economic Benefits With an emphasis on novel application, the text includes chapters that address such topics as: infrared heating system design Drying Blanching Baking Thawing Pest management Food safety improvement Where applicable, this readily accessible guide reviews case studies to address specific industrial issues and the economic benefits of IR heating. Infrared Heating for Food and Agricultural Processing is a well-organized resource for food processing engineers and also quality control and safety managers in food processing and food manufacturing operations.

Practical Guide to Interpretive Near-Infrared Spectroscopy

The evolution of technological advances in infrared sensor technology, image processing, "smart" algorithms, knowledge-based databases, and their overall system integration has resulted in new methods of research and use in medical infrared imaging. The development of infrared cameras with focal plane arrays no longer requiring cooling, added a new dimension to this modality. Medical Infrared Imaging: Principles and Practices covers new ideas, concepts, and technologies along with historical background and clinical applications. The book begins by exploring worldwide advances in the medical applications of thermal imaging systems. It covers technology and hardware including detectors, detector materials, un-cooled focal plane arrays, high performance systems, camera characterization, electronics for on-chip image processing, optics, and cost-reduction designs. It then discusses the physiological basis of the thermal signature and its interpretation in a medical setting. The book also covers novel and emerging techniques, the complexities and importance of protocols for effective and reproducible results, storage and retrieval of thermal images, and ethical obligations. Of interest to both the medical and biomedical engineering communities, the book explores many opportunities for developing and conducting multidisciplinary research in many areas of medical infrared imaging. These range from clinical quantification to intelligent image processing for enhancement of the interpretation of images, and for further development of user-friendly high-resolution thermal cameras. These would enable the wide use of infrared imaging as a viable, noninvasive, low-cost, first-line detection modality.

Medical Infrared Imaging

Infrared and Millimeter Waves, Volume 8: Electromagnetic Waves in Matter, Part I compiles the work of several authors while focusing on certain aspects of infrared and millimeter waves, such as sources of radiation, instrumentation, and millimeter systems. This volume discusses electromagnetic waves in matter. The first chapter covers the properties of the dielectric materials, which is then followed by a discussion of far-infrared spectroscopy on high polymers. Chapter 3 tackles submillimeter solid-state physics, and Chapter 4 reviews the theory of infrared and far-infrared free-carrier behavior in semiconductors. The improvements in pyroelectric detectors are then reviewed. The sixth chapter discusses cyclotron and Zeeman transitions in photoexcited semiconductors at far infrared, while the seventh chapter discusses high temperature infrared
reflectivity spectroscopy. Chapter 8 covers millimeter and submillimeter waves’ interaction with giant atoms. The last chapter is about spectroscopy of InAs-GaSb layered structures. This book will be of great use to researchers or professionals whose work involves infrared and millimeter waves.

Ultrafast Infrared Vibrational Spectroscopy

Cameras can capture what the eye can’t perceive: the presence of infrared light. And shooting infrared (IR) with a digital camera makes it easier than ever to create distinctly dreamlike, high-contrast black-and-white pictures. Using a wealth of stunning images, this thorough resource explores the technical and creative possibilities of this unique and increasingly popular medium. Get tips on focus and exposure; IR filters; and having a camera converted to shoot specifically in infrared. Follow instructions for processing and printing the photos—including toner effects and faux color. One glance through this guide and it’s clear why infrared pictures are fun to take and beautiful to look at.

Infrared Heating for Food and Agricultural Processing

An introduction to characteristic group frequencies for those who may need to interpret or examine infrared spectra. The characteristic absorptions of functional groups over the entire infrared region (including the far infrared) are given in tables as well as being discussed and amplified in the text. This revised edition (1st ed., 1988) includes a number of new correlation charts. Annotation copyright by Book News, Inc., Portland, OR.

Infrared Radiation

Handbook of Infrared and Raman Spectra of Inorganic Compounds and Organic Salts.

Infrared and Millimeter Waves

This book is about general infrared (IR) engineering, technology, practices, and principles as they apply to modern imaging systems. An alternative title to this book with appeal to managers and marketing personnel might be “Everything You Always Wanted to Know about Infrared Sensors, but Couldn’t Get Answers on from Engineers.” This book is not meant to be a comprehensive compendium of IR (like the Infrared and Electro Optical Systems Handbook). Rather, it is intended to complement such texts by providing up to date information and pragmatic knowledge that is difficult to locate outside of periodicals. The information contained in this book is critical in the day-to-day life of engineering practitioners, proposal writers, and those on the periphery of an IR program. It serves as a guide for engineers wishing to “catch up,” engineers new to the field, managers, students, administrators, and technicians. It is also useful for seasoned IR engineers who want to review recent technological developments.

Fourier Transform Infrared Characterization of Polymers

Fast, inexpensive, and easy-to-use, near-infrared (NIR) spectroscopy can be used to analyze small samples of virtually any composition. The Handbook of Near Infrared Analysis, Third Edition explains how to perform accurate as well as time- and cost-effective analyses across a growing spectrum of disciplines. Presenting nearly 50% new and revised material, this thoroughly updated edition incorporates the latest advances in instrumentation, computerization, calibration, and method development in NIR spectroscopy. The book underscores current trends in sample preparation, calibration transfer, process control, data analysis, and commercial NIRA instrumentation. New chapters highlight novel applications including the analysis of agro-forestry products, polymers, blood, and control serum. They also cover NIR spectra, process analytical technologies (PAT), quantitative and qualitative analyses for nutraceuticals, NIRA photography uses in medicine, and counterfeit detection methods for pharmaceuticals and currency. Offering the most complete single-source guide of its kind, the Handbook of Near Infrared Analysis, Third Edition continues to offer practicing chemists and spectroscopists an unparalleled combination of theoretical foundations, cutting-edge applications, and practical experience provided firsthand by more than 60 experts in the field.

Surface Infrared and Raman Spectroscopy

This quick-reference guide contains over 400 Fourier-transform infrared (FTIR) spectra of commonly used pesticides and related metabolites. Systematically arranged for easy referral, the book supplies relevant chemical, physical and structural data, in addition to the spectra; compares the improved quality of spectra performed on Fourier transform instruments, in terms of signal-to-noise ratio and optical resolution, to those recorded on dispersive spectrometers; and promotes Good Laboratory Practices (GLP) and Good Manufacturing Practices (GMP) by applying infrared spectroscopy to identify control of standards prior to performing qualitative and quantitative analyses.

Zapped

Optics is reborn. There is fresh new vitality in applying old techniques to new problems and fully exploring novel phenomena. Lasers, holography, stellar navigation, nonlinear phenomena, and remote sensing are subjects of the seventies, and their further development will increase our understanding of nature and the development of technology. This Series is devoted to providing ideas and data to nourish the growth of these subjects. The second volume develops the application of lasers in the fields of biology, medicine, industry, and other sciences, including the study of materials and structures. The laser becomes a powerful tool in these fields, as well as in astrophysics, geophysics, and other areas of science.

Detection of Optical and Infrared Radiation

This new up-to-date edition of the successful handbook and ready reference retains the proven concept of the first, covering basic and advanced methods and applications in infrared imaging from two leading expert authors in the field. All chapters have been completely revised and expanded and a new chapter has been added to reflect recent developments in the field and report on the progress made within the last decade. In addition there is now an even stronger focus on real-life examples, with 20% more case studies taken from science and industry. For ease of comprehension the text is backed by more than 350 images which include graphic visualizations and more than 300 infrared thermography figures. The latter include many new ones depicting, for example, spectacular views of phenomena in nature, sports, and daily life.

Infrared Technology Fundamentals

New laser technology has developed a new dye chemistry! Development of the gallium-arsenic semiconductor laser (diode laser) that emits laser light at 780-830 nm has made possible development of new laser optical recording systems, thermal writing systems. Laser materials, lasers, and laser systems form one of the groups which will comprise the full set of ready-reference material for the entire Series. The Series will be intentionally international, including a fair sampling of Russian work. There are important benefits to be obtained in the alternate approaches often taken by our Soviet and other foreign colleagues (just as they can gain from studying ours).
display systems, laser printing systems, and so on. Medical applications of lasers in photodynamic therapy for the treatment of cancer were also developed. In such systems, the infrared absorbing dyes or IR dyes) are currently used as effective photoreceivers for diode lasers, and will become the key materials in high technology. At the present time the chemistry of IR dyes is the most important and interesting field in dye chemistry. Laser light can be highly monochromatic, very well collimated, coherent, and, in some cases, extremely powerful. These characteristics make diode lasers a very cheap, convenient, and useful light source for a variety of applications in science and technology. For these purposes, however, IR dyes with special characteristics are required. To develop new IR dyes, it is most important to establish the correlation between the chemical structures of dyes and other characteristics of dyes, such as their absorption spectra. Molecular design of IR dyes predicting the Ammax and Emax values by molecular orbital (MO) calculations is now possible even by using a personal computer, and many types of new IR dyes have been demonstrated. Also, new opto-electronic systems using IR dyes as photoreceivers have been reported recently.

Introduction to Infrared and Raman Spectroscopy

This necessary desk reference for every practicing spectroscopist represents the first definitive book written specifically to integrate knowledge about group frequencies in infrared as well as Raman spectra. In the spirit of previous classics developed by Bellamy and others, this volume has expanded its scope and updated its coverage. In addition to detailing characteristic group frequencies of compounds from a comprehensive assortment of categories, the book includes a collection of spectra and a literature search conducted to verify existing correlations and to determine ways to enhance correlations between vibrational frequencies and molecular structure. Particular attention has been given to the correlation between Raman characteristic frequencies and molecular structure. Key Features * Constitutes a necessary reference for every practicing vibrational spectroscopist * Provides the new definitive text on characteristic frequencies of organic molecules * Incorporates group frequencies for both infrared and Raman spectra * Details the characteristic IR and Raman frequencies of compounds in more than twenty major categories * Includes an extensive collection of spectra * Compiled by internationally recognized experts

Infrared Thermal Imaging

Optics is reborn. There is fresh new vitality in applying old techniques to new problems and fully exploring novel phenomena. Lasers, holography, stellar navigation, nonlinear phenomena, and remote sensing are subjects of the seventies, and their further development will increase our understanding of nature and the development of technology. This Series is devoted to providing ideas and data to nourish the growth of these scientific and engineering areas so we can strengthen science and engineering flourish best when they grow together. Some of the volumes in the Series will be devoted to the optical properties of materials, theories of the detailed mechanism of absorption, reflection, and nonlinear phenomena, and electro-optical coefficients. The understanding of such things leads to further engineering applications. Companions to such theoretical books will be compendia of property data; the triad is completed by monographs on the use of the materials in optical and electro-optical systems. Laser materials, lasers, and laser systems form one of the groups which will comprise the full set of ready-reference material for the entire field. The Series will be intentionally international, including a fair sampling of Russian work. There are important benefits to be obtained in the alternate approaches often taken by our Soviet and other foreign colleagues (just as they can gain from studying ours).

Infrared Absorbing Dyes

This book contains the proceedings of the Symposium on FT-IR Characterization of Polymers, which was held under the auspices of the Division of Polymer Chemistry, American Chemical Society (ACS) during the annual ACS meeting in Philadelphia, August, 1984. The content of each paper has been substantially extended from the papers presented during the conference. Due to the accidental, irrecoverable loss of the entire contents of the book by the computer system used for editorial purposes, the publication of this book has been delayed more than one year over the initial scheduled date. It has been a continuous, frustrating experience for the editor as well as for the authors. An extended Murphy's law, "anything can go wrong goes multiply wrong" has been demonstrated in editor's office. It necessitated, otherwise unnecessary, repeated proof reading during which time the editor had valuable experience -in familiarizing himself with each paper much more than usual. The papers in this book are state-of-the-art even after such a delay. It is the authors pride and integrity toward the quality of each paper that makes the value of this book last long, while responsibility of the loss of any timeliness rests at the editor's hand. For the purpose of official records, submission and acceptance dates must be stated. All papers had been submitted by September, 1984, and had been accepted for publication by November, 1984, after the critical review processes.

Spectral Radiance of Snow and Clouds in the Near Infrared Spectral Region

This book explores oxygen-free chalcogenide glasses, the only commercial transparent vitreous materials used for long-wave infrared radiation. The chalcogenides have been the subject of study around the world for many years, and continue to be an important area of research and development in infrared optics. Written by a renowned glass specialist with extensive experience working with chalcogenide glasses, Glasses for Infrared Optics includes discussions of: Chalcogenide glasses - a unique class of vitreous substances Optical properties of chalcogenide glasses Elaboration of commercial glasses Technological basics for manufacturing optical chalcogenide glasses. The material presented in Glasses for Infrared Optics is based on research performed at the Vavilov State Optical Institute in Russia. This is the first and only work that reviews every aspect of chalcogenide glasses. The scope of this comprehensive book is unique, and the major portion of this work has never been published before in English.

The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules

Infrared System Engineering

This classic opens with a history of the development of the infrared portion of the spectrum, probes the system engineering process, and then examines the characteristics of the successful system engineer. The next eleven chapters delve deeply into the elements of infrared technology. Chapter 13 explains the functional relationships between the various system elements and the effects of their interactions when assembled into a system. In Chapter 14 the reader is invited to watch the development of an infrared search system for commercial jet transports. Part II contains an in-depth treatment of the applications of infrared techniques to the solution of military, industrial, medical, and scientific problems. It contains nearly 1400 annotated references to the infrared literature of the world. The annotations summarize the content, describe the hardware, details its performance and examine the significant results. The references are carefully arranged, extensively indexed, and does not contain citations to the classified or report literature, a feature appreciated by most readers. For those readers having the necessary credentials, Appendix 4 is a guide to the unpublished and classified literature of the infrared.

IRAS

Infrared light radiates from almost all the matter on earth, and its strategic use will be an important issue for the enhancement of human life and the
sustainable development of modern industry. Since its frequency is in the same region as phonons or molecular vibrations of materials, measuring its emission or absorption spectra helps us in characterizing and identifying materials in a non-destructive manner. Meanwhile, if we can spectroscopically design infrared emission by tuning chemical composition or artificially controlling nano- to mesoscale structures, this will have a great impact on industrial applications, such as thermophotovoltaics, energy-saving drying furnaces, spectroscopic infrared light sources, and various types of infrared sensors. In this Special Issue, we encourage submissions from researchers who are working on infrared nanophotonics based on MEMS/NEMS, and nanomaterials science, ranging from materials synthesis, to device fabrications, electromagnetic simulations, and thermal managements. Important topics of growing interest are wavelength-selective infrared emitters and detectors, where we can see rapid development in the fields of nano-plasmonics and metamaterials, and we invite such topics for inclusion in this Special Issue. We also encourage submissions on nanomaterials science such as on graphene-based infrared detectors/ emitters, and nanostructured narrow-band gap semiconductors.

Far-Infrared Properties of Solids

The advent of laser-based sources of ultrafast infrared pulses has extended the study of very fast molecular dynamics to the observation of processes manifested through their effects on the vibrations of molecules. In addition, non-linear infrared spectroscopic techniques make it possible to examine intra- and intermolecular interactions and how such interactions evolve on very fast time scales, but also in some instances on very slow time scales. Ultrafast Infrared Vibrational Spectroscopy is an advanced overview of the field of ultrafast infrared vibrational spectroscopy based on the scientific research of the leading figures in the field. The book discusses experimental and theoretical topics reflecting the latest accomplishments and understanding of ultrafast infrared vibrational spectroscopy. Each chapter provides background, details of methods, and explication of a topic of current research interest. Experimental and theoretical studies cover topics as diverse as the dynamics of water and the dynamics and structure of biological molecules. Methods covered include vibrational echo chemical exchange spectroscopy, IR-Raman spectroscopy, time resolved sum frequency generation, and 2D IR spectroscopy. Edited by a recognized leader in the field and with contributions from top researchers, including experimentalists and theoreticians, this book presents the latest research methods and results. It will serve as an excellent resource for those new to the field, experts in the field, and individuals who want to gain an understanding of particular methods and research topics.

Introduction to Experimental Infrared Spectroscopy

This richly illustrated hands-on guide is designed for researchers, teachers and practitioners. The huge selection of examples taken from science, basic teaching of physics, practical applications in industry and a variety of other disciplines spanning the range from medicine to volcano research allows readers to pick those that come closest to their own individual task at hand. Following a look at the fundamentals of IR thermal imaging, properties of the imaging systems, as well as basic and advanced methods, the book goes on to discuss IR imaging applications in teaching, research and industry. Specific examples include thermography of buildings, microsystems and the rather new field of IR imaging of gases. Impartially written by expert authors in the field from a renowned applied science institution, who are in the unique position of having both experience in public and private research and in teaching, this comprehensive book can be used for teaching beginners in the field as well as providing further education to specialized staff, students and researchers.

Infrared Spectra of Cellulose and its Derivatives

Infrared and Millimeter Waves

Interpreted Infrared Spectra

This work provides a basic understanding of the physical background and engineering considerations required for the design of IR systems, examining all components and combining them into examples of current surveillance systems. This second edition presents: new coverage of state-of-the-art optical systems, including lightweight mirrors and adaptive

Non-Dispersive Infrared Gas Measurement

Containing focused, comprehensive coverage, Practical Guide to Interpretive Near-Infrared Spectroscopy gives you the tools necessary to interpret NIR spectra. The authors present extensive tables, charts, and figures with NIR absorption band assignments and structural information for a broad range of functional groups, organic compounds, and

Glasses for Infrared Optics

Pedagogical classic and essential reference focuses on mathematics of detailed vibrational analyses of polyatomic molecules, advancing from application of wave mechanics to potential functions and methods of solving secular determinant.

Principles of Infrared Technology

Uncover the Secrets of the Universe Hidden at Wavelengths beyond Our Optical Gaze William Herschel's discovery of infrared light in 1800 led to the development of astronomy at wavelengths other than the optical. Infrared Astronomy -- Seeing the Heat: from William Herschel to the Herschel Space Observatory explores the work in astronomy that relies on observations in the infrared. Author David L. Clements, a distinguished academic and science fiction writer, delves into how the universe works, from the planets in our own Solar System to the universe as a whole. The book first presents the major telescopes in the world of observational infrared astronomy, explains how infrared light is detected through various kinds of telescopes, and describes practical problems that send infrared astronomers to the tops of mountains and their telescopes into orbit and beyond. Much of the book focuses on what infrared astronomers find in their observations. You'll discover what infrared astronomy reveals about the planets, moons, and other bodies that constitute our Solar System: star formation and stellar evolution; the processes that shape galaxies; and dark energy and dark matter. Infrared astronomy has revolutionized our understanding of the universe and has become essential in studying cosmology. Accessible to amateur astronomers, this book presents an overview of the science and technology associated with infrared astronomy. With color figures, it shows you how infrared astronomy provides insights into the workings of the universe that are unavailable at other wavelengths.

Night Vision

Written by experts in the field, the Non-Dispersive Infrared Gas Measurement begins with a brief survey of various gas measurement techniques and continues with fundamental aspects and cutting-edge progress in NDIR gas sensors in their historical development. Providing sufficient background information and details, the book Non-Dispersive Infrared Gas Measurement is an excellent resource for advanced level undergraduate and graduate students as well as researchers, instrumentation engineers, applied physicists, chemists, material scientists in gas, chemical, biological, and...
and medical sensors to have a comprehensive understanding of the development of non-dispersive infrared gas sensors and the trends for the future investigation.

Infrared Spectra of Inorganic Compounds (3800-45cm⁻¹)

Michael Rowan-Robinson provides a comprehensive history of infrared astronomy in this accessible and well-illustrated guide.

Infrared Spectra of Pesticides

This monograph is concerned with systematization of the infrared spectra of an important natural polymer, cellulose, and its derivatives. The infrared spectra of the main classes of cellulose derivatives are described and interpreted and those of such model compounds as mono-, di-, and tri saccharides are considered. Considerable attention is given to prob lems of technique in obtaining infrared spectra of fibrous cellulose materials, and to the analytical possibilities of infrared spectroscopy in studies of the properties of cellulose and its derivatives. The book will be of use to scientific and plant workers interested in the study and treatment of cellulose, compounds related to cellulose (carbohydrates and polycarbohydrates), and other polymers. v INTRODUCTION Spectroscopy has nowadays acquired great scientific and practical importance. Its possibilities are based on the specificity of the emission and absorption spectra of all types of material, from elements to complex natural products. Most widely used are the methods of emission spectral analysis (analysis of the emission spectrum from an incandescent body). The rapidity and availability of these methods, together with their high sensitivity and selectivity, has made them indispensable in the practice of plant and scientific laboratories for establishing the presence of specific elements in a substance under investigation.

Infrared Thermal Imaging

After a childhood marked by pain, Rena Greenblatt has found the strength to build a successful career as a photographer. Like the ultrasensitive infrared film she uses, Rena sees what others don't see, and finds a form of love. By photographing men's bodies, she hopes to glimpse their souls. Away from her lover, Aziz, stuck in Florence with her infuriating stepmother and her ageing, unwell father, Rena confronts the masterpieces of the Renaissance alongside the banal inconveniences of a family holiday. At the same time, she finds herself travelling into dark and passionate memories of desire that lead her into a series of disturbing revelations.

Handbook of Near-Infrared Analysis, Third Edition

This text treats the fundamentals of optical and infrared detection in terms of the behavior of the radiation field, the physical properties of the detector, and the statistical behavior of the detector output. Both incoherent and coherent detection are treated in a unified manner, after which selected applications are analyzed, following an analysis of atmospheric effects and signal statistics. The material was developed during a one-semester course at M.I.T. in 1975, revised and presented again in 1976 at Lincoln Laboratory, and rewritten for publication in 1977. Chapter 1 reviews the derivation of Planck's thermal radiation law and also presents several fundamental concepts used throughout the text. These include the three thermal distribution laws (Boltzmann, Fermi-Dirac, Bose-Einstein), spontaneous and stimulated emission, and the definition and counting of electromagnetic modes of space. Chapter 2 defines and analyzes the perfect photon detector and calculates the ultimate sensitivity in the presence of thermal radiation. In Chapter 3, we turn from incoherent or power detection to coherent or heterodyne detection and use the concept of orthogonal spatial modes to explain the antenna theorem and the mixing theorem. Chapters 4 through 6 then present a detailed analysis of the sensitivity of vacuum and semiconductor detectors, including the effects of amplifier noise.

Infrared Characteristic Group Frequencies

Infrared and Millimeter Waves V8

Now in its third edition, this classic text covers many aspects of infrared and Raman spectroscopy that are critical to the chemist doing structural or compositional analysis. This work includes practical and theoretical approaches to spectral interpretation as well as a discussion of experimental techniques. Emphasis is given to group frequencies, which are studied in detailed discussions, extensive tables, and over 600 carefully chosen and interpreted spectral examples. Also featured is a unique treatment of group frequencies that stresses their mechanical origin. This qualitative approach to vibrational analysis helps to simplify spectral interpretation. Additional topics include basic instrumental components and sampling techniques, quantitative analysis, Raman polarization data, infrared gas contours, and polarized IR studies, among others. Focuses on group frequency correlations and how to use them in spectral interpretation. Revised and updated by a pioneer in the field, Norman Colthup, who for thirty years has served as an expert lecturer for the Fisk Infrared Institute Explores new group frequency studies in aromatics, alkanes and olefins, among others Includes completely updated section on instrumentation

Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals

Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals makes available in a single reference work original descriptions and summaries of the research on infrared and Raman spectroscopy of lunar and terrestrial minerals so that this information will be readily available not only to those researchers in the continuing programs on lunar samples from the completed Apollo series and on the remote sensing of solar system objects, but, in particular, to that much larger group of researchers in government, industry, and universities involved in the many programs on terrestrial minerals and earth sciences by remote sensing. The chapters in this volume are arranged according to spectroscopic technique and/or frequency range rather than application. Thus there are chapters on visible and near-infrared, followed by those on mid-infrared, far-infrared, and Raman spectroscopy. Applications are roughly divided between lunar and terrestrial, although the broad range of interchangeability of applications is obvious in many instances. There are also chapters on remote sensing of space targets and earth sciences; on lunar mineralogy and terrestrial mineralogy and geology; and on structures of lunar minerals and structures of terrestrial minerals.

Complete Guide to Digital Infrared Photography

Infrared Astronomy - Seeing the Heat

This book provides an account of modern aspects relating far infrared radiation to properties of solids; it encompasses both theoretical and experimental considerations. Written at the graduate level, it attempts a threefold purpose; an indication of the breadth of the subject, an in-depth examination of important areas, and reference material to complement a text for a course. The treatment and organization of material here is compatible with a preceding volume of this series on “Optical Properties of Solids.” Chapters 1-6 present material concerned principally with experimental considerations necessary to the carrying out of infrared experiments in the far infrared spectral region. They also serve to provide
considerable introductory material for the remaining chapters which deal with various areas that offer theoretical treatments utilizing and understanding far infrared properties of solids. Several lectures presented at the Institute could not be included in this book for two reasons: (i) Final versions of the lecture notes suitable for publication never arrived from several lecturers; (ii) Some materials were deliberately left out from this book as they were also presented at an earlier NATO Institute and form part of a preceding volume edited by us in this series. In particular, it is recommended that Chapters 14 and 15, viz., infrared and Raman spectra due to lattice vibrations by S. S. Mitra and impurity induced lattice absorption by L. Genzel in ‘Optical Properties of Solids’ be read concurrently with the present volume.

Infrared Thermography

Written with engineers and researchers in mind, author W. Suetka offers a well-illustrated, basic reference on the use of infrared (IR) and Raman spectroscopy in the investigation of surfaces of practical materials. This book only requires a basic knowledge of vibrational spectroscopy for understanding the included discussions. Chapters illustrate applications of IR and Raman spectroscopy in the investigation of a variety of real surfaces. Featured in this volume are the typical results obtained for species on clean and well-defined surfaces in ultrahigh vacuum environments.

Copyright code: de1c318db60bc972858577273c2d1ddd