Ecg Signal Processing Using Digital Signal Processing | f40f3a376cdda7f35c848cc4c94fafc9

Handbook of Research on Information Security in Biomedical Signal Processing

Current Trends in Short- and Long-period Fiber Gratings

Biosignal Processing and Classification Using Computational Learning and Intelligence: Principles, Algorithms and Applications posits an approach for biosignal processing and classification using computational learning and intelligence, highlighting that the term biosignal refers to all kinds of signals that can be continuously measured and monitored in living beings. The book is composed of five relevant parts. Part One is an introduction to biosignals and Part Two describes the relevant techniques for biosignal processing, feature extraction and feature selection/dimensionality reduction. Part Three presents the fundamentals of computational learning (machine learning). Then, the main techniques of computational intelligence are described in Part Four. The authors focus primarily on the explanation of the most used methods in the last part of this book, which is the most extensive portion of the book. This part consists of a recapitulation of the newest applications and reviews in which these techniques have been successfully applied to the biosignals' domain, including EEG-based Brain-Computer Interfaces (BCI) focused on P300 and Imagined Speech, emotion recognition from voice and video, leukemia recognition, infant cry recognition, EEG-based ADHD identification among others. Provides coverage of the fundamentals of signal processing, including sensing the heart, sending the brain, sensing human acoustic, and sensing other organs Includes coverage biosignal pre-processing techniques such as filtering, artifact removal, and feature extraction techniques such as Fourier transform, wavelet transform, and MFCC Covers the latest techniques in machine learning and computational intelligence, including Supervised Learning, common classifiers, feature selection, dimensionality reduction, fuzzy logic, neural networks, Deep Learning, bio-inspired algorithms, and Hybrid Systems Written by engineers, computer scientists, researchers, and clinicians understand the technology and applications of computational learning to biosignal processing

Current Trends in Short- and Long-period Fiber Gratings

Quickly Engages in Applying Algorithmic Techniques to Solve Practical Signal Processing Problems With its active, hands-on learning approach, this text enables readers to master the underlying principles of digital signal processing and its many applications in industries such as digital television, mobile and broadband communications, and medical/scientific devices. Carefully developed MATLAB® examples throughout the text illustrate the mathematical concepts and use of digital signal processing algorithms. Readers will develop a deeper understanding of how to apply the algorithms by manipulating the codes in the examples to see their effect. Moreover, plenty of exercises help to put knowledge into practice solving real-world signal processing challenges. Following an introductory chapter, the text explores: Sampled signals and digital processing Random signals Representing signals and systems Temporal and spatial signal processing Frequency analysis of signals Discrete-time filters and recursive filters Each chapter begins with chapter objectives and an introduction. A summary at the end of each chapter ensures that one has mastered all the key concepts and techniques before progressing in the text. Lastly, appendices listing selected web resources, research papers, and related textbooks enable the investigation of individual topics in greater depth. Upon completion of this text, readers will understand how to apply key algorithmic techniques to address practical signal processing problems as well as develop their own signal processing algorithms. Moreover, the text provides a solid foundation for evaluating and applying new digital processing signal techniques as they are developed.

Biological Signal Analysis

This book, divided in two volumes, originates from Techno-Societal 2018: the 2nd International Conference on Advanced
Technologies for Societal Applications, Maharashtra, India, that brings together faculty members of various engineering colleges to solve Indian regional relevant problems under the guidance of eminent researchers from various reputed organizations. The focus is on technologies that help develop and improve society, in particular on issues such as the betterment of differently abled people, environment impact, livelihood, rural employment, agriculture, healthcare, energy, transport, sanitation, water, education. This conference aims to help innovators to share their best practices or products developed to solve specific local problems which in turn may help the other researchers to take inspiration to solve problems in their region. On the other hand, technologies proposed by expert researchers may find applications in different regions. This offers a multidisciplinary platform for researchers from a broad range of disciplines of Science, Engineering and Technology for reporting innovations at different levels.

Variance Reduction of Prediction Error Using Fractional Digital Differentiation: Application to ECG Signal Processing

This book constitutes the refereed proceedings of the International Conference on Advances in Computing Communications and Control, ICAC3 2011, held in Mumbai, India, in January 2011. The 84 revised full papers presented were carefully reviewed and selected from 309 submissions. The papers address issues such as AI, artificial neural networks, computer graphics, data warehousing and mining, distributed computing, geo information and statistical computing, learning algorithms, system security, virtual reality, cloud computing, service oriented architecture, semantic web, coding techniques, modeling and simulation of communication systems, network architecture, network protocols, optical fiber/microwave communication, satellite communication, speech/image processing, wired and wireless communication, cooperative control, and nonlinear control, process control and instrumentation, industrial automation, controls in aerospace, robotics, and power systems.

Mobile Radio Communications and 5G Networks

Advances in Swarm Intelligence

This book presents the select proceedings of the International Conference on Automation, Signal Processing, Instrumentation and Control (i-CASIC) 2020. The book mainly focuses on emerging technologies in electrical systems, IoT-based instrumentation, advanced industrial automation, and advanced image and signal processing. It also includes studies on the analysis, design and implementation of instrumentation systems, and high-accuracy and energy-efficient controllers. The contents of this book will be useful for beginners, researchers as well as professionals interested in instrumentation and control.

Ultra Low Power ECG Processing System for IoT Devices

The analysis of bioelectrical signals continues to receive wide attention in research as well as commercially because novel signal processing techniques have helped to uncover valuable information for improved diagnosis and therapy. This book takes a unique problem-driven approach to biomedical signal processing by considering a wide range of problems in cardiac and neurological applications-the two "heavyweight" areas of biomedical signal processing. The interdisciplinary nature of the topic is reflected in how the text interweaves physiological issues with related methodological considerations. Bioelectrical Signal Processing is suitable for a final year undergraduate or graduate course as well as for use as an authoritative reference for practicing engineers, physicians, and researchers. Solutions Manual available online at http://www.textbooks.elsevier.com. A problem-driven, interdisciplinary presentation of biomedical signal processing. Focus on methods for processing of bioelectrical signals (ECG, EEG, evoked potentials, EMG). Covers both classical and recent signal processing techniques. Emphasis on model-based statistical signal processing. Comprehensive exercises and illustrations. Extensive bibliography. For companion web site with project descriptions and signals for download see www.biosignal.lth.se

Applications of Digital Signal Processing

Intended as a text for three courses—Signals and Systems, Digital Signal Processing (DSP), and DSP Architecture—this comprehensive book, now in its Second Edition, continues to provide a thorough understanding of digital signal processing, beginning from the fundamentals to the implementation of algorithms on a digital signal processor. This Edition includes a new chapter on Continuous Time Signals and Systems, and many Assembly and C programs, which are useful to conduct a laboratory course in Digital Signal Processing. Besides, many existing chapters are modified substantially to widen the coverage of the book. Primarily designed for undergraduate students of Electronics and Communication Engineering, Electronics and Instrumentation Engineering, Electrical and Electronics Engineering, Instrumentation and Control Engineering, Computer Science and Engineering, and Information Technology, this text will also be useful as a supplementary text for advanced digital signal processing and real time digital signal processing courses of Postgraduate programmes. KEY FEATURES: Provides a large number of worked-out examples to strengthen the grasp of the concepts of digital signal processing. Explains the architecture, addressing modes and instructions of TMS 320C54XX fixed point DSP with assembly language and C programs. Includes MATLAB programs and exercises throughout the book. Offers review questions and multiple choice questions at the end of each chapter to help students test their understanding about the fundamentals of the subject. Contains MATLAB commands in Appendix.
Instructions du 1er octobre 1903 aux sages-femmes du canton de Vaud

In this book the reader will find a collection of chapters authored/co-authored by a large number of experts around the world, covering the broad field of digital signal processing. This book intends to provide highlights of the current research in the digital signal processing area, showing the recent advances in this field. This work is mainly destined to researchers in the digital signal processing and related areas but it is also accessible to anyone with a scientific background desiring to have an up-to-date overview of this domain. Each chapter is self-contained and can be read independently of the others. These nineteenth chapters present methodological advances and recent applications of digital signal processing in various domains as communications, filtering, medicine, astronomy, and image processing.

Research Advances in the Integration of Big Data and Smart Computing

In this book the reader will find a collection of chapters authored/co-authored by a large number of experts around the world, covering the broad field of digital signal processing. This book intends to provide highlights of the current research in the digital signal processing area, showing the recent advances in this field. This work is mainly destined to researchers in the digital signal processing and related areas but it is also accessible to anyone with a scientific background desiring to have an up-to-date overview of this domain. Each chapter is self-contained and can be read independently of the others. These nineteenth chapters present methodological advances and recent applications of digital signal processing in various domains as communications, filtering, medicine, astronomy, and image processing.

Digital Image and Signal Processing for Measurement Systems

Advances in Automation, Signal Processing, Instrumentation, and Control

In this book the reader will find a collection of chapters written by different experts around the world, describing the current research trends in both short- and long-period fiber grating technology. This work is mainly addressed to researchers already working in this area, but it is also accessible to anyone with a scientific background who desires to have an updated overview of the recent progress in this domain. It will also be valuable to scientist and engineers who have become newly involved in this field. Each chapter is self-contained and can be read independently of the others. This book intends to provide highlights of the current research in this area, showing the recent advances in the field of fiber gratings.

Advances in Computing, Communication and Control

The book features original papers by active researchers presented at the International Conference on Mobile Radio Communications and 5G Networks. It includes recent advances and upcoming technologies in the field of cellular systems, 2G/2.5G/3G/4G/5G and beyond, LTE, WiMAX, WMAN, and other emerging broadband wireless networks, WLAN, WPAN, and various home/personal networking technologies, pervasive and wearable computing and networking, small cells and femtocell networks, wireless mesh networks, vehicular wireless networks, cognitive radio networks and their applications, wireless multimedia networks, green wireless networks, standardization of emerging wireless technologies, power management and energy conservation techniques. .

World Congress on Medical Physics and Biomedical Engineering September 7 - 12, 2009 Munich, Germany

This book discusses the design and implementation aspects of ultra-low power biosignal acquisition platforms that exploit analog-assisted and algorithmic approaches for power savings. The authors describe an approach referred to as “analog-and-algorithm-assisted” signal processing. This enables significant power consumption reductions by implementing low power biosignal acquisition systems, leveraging analog preprocessing and algorithmic approaches to reduce the data rate very early in the signal processing chain. They demonstrate savings for wearable sensor networks (WSN) and body area networks (BAN), in the sensors’ stimulation power consumption, as well in the power consumption of the digital signal processing and the radio link. Two specific implementations, an adaptive sampling electrocardiogram (ECG) acquisition and a compressive sampling (CS) photoplethysmogram (PPG) acquisition system, are demonstrated. First book to present the so called, “analog-and-algorithm-assisted” approaches for ultra-low power biosignal acquisition and processing platforms; Covers the recent trend of “beyond Nyquist rate” signal acquisition and processing in detail, including adaptive sampling and compressive sampling paradigms; Includes chapters on compressed domain feature extraction, as well as acquisition of photoplethysmogram, an emerging optical sensing modality, including compressive sampling based PPG readout with embedded feature extraction; Discusses emerging trends in sensor fusion for improving the signal integrity, as well as lowering the power consumption of biosignal acquisition systems.

Biosignal Processing and Classification Using Computational Learning and Intelligence

MODERN DIGITAL SIGNAL PROCESSING
The book provides a comprehensive exposition of all major topics in digital signal processing (DSP). With numerous illustrative examples for easy understanding of the topics, it also includes MATLAB-based examples with codes in order to encourage the readers to become more confident of the fundamentals and to gain insights into DSP. Further, it presents real-world signal processing design problems using MATLAB and programmable DSP processors. In addition to problems that require analytical solutions, it discusses problems that require solutions using MATLAB at the end of each chapter. Divided into 13 chapters, it addresses many emerging topics, which are not typically found in advanced texts on DSP. It includes a chapter on adaptive digital filters used in the signal processing problems for faster acceptable results in the presence of changing environments and changing system requirements. Moreover, it offers an overview of wavletes, enabling readers to easily understand the basics and applications of this powerful mathematical tool for signal and image processing. The final chapter explores DSP processors, which is an area of growing interest for researchers. A valuable resource for undergraduate and graduate students, it can also be used for self-study by researchers, practicing engineers and scientists in electronics, communications, and computer engineering as well as for teaching one- to two-semester courses.

Biomedical Signal Processing

Present Your Research to the World! The World Congress 2009 on Medical Physics and Biomedical Engineering – the triennial scientific meeting of the IUPESM - is the world’s leading forum for presenting the results of current scientific work in health-related physics and technologies to an international audience. With more than 2,800 presentations it will be the biggest conference in the fields of Medical Physics and Biomedical Engineering in 2009! Medical physics, biomedical engineering and bioengineering have been driving forces of innovation and progress in medicine and healthcare over the past two decades. As new key technologies arise with significant potential to open new options in diagnostics and therapeutics, it is a multidisciplinary task to evaluate their benefit for medicine and healthcare with respect to the quality of performance and therapeutic output. Covering key aspects such as information and communication technologies, micro- and nanosystems, optics and biotechnology, the congress will serve as an inter- and multidisciplinary platform that brings together people from basic research, R&D, industry and medical application to discuss these issues. As a major event for science, medicine and technology the congress provides a comprehensive overview and in-depth, first-hand information on new developments, advanced technologies and current and future applications. With this Final Program we would like to give you an overview of the dimension of the congress and invite you to join us in Munich! Olaf Dössel Congress President Wolfgang C.

Digital Signal Processing

This book provides an overview of advanced digital image and signal processing techniques that are currently being applied in the realm of measurement systems. The book is a selection of extended versions of the best papers presented at the Sixth IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications IDAACS 2011 related to this topic and encompass applications that go from multidimensional imaging to evoked potential detection in brain computer interfaces. The objective was to provide a broad spectrum of measurement applications so that the different techniques and approaches could be presented. Digital Image and Signal Processing for Measurement Systems concentrates on signal processing for measurement systems and its objective is to provide a general overview of the area and an appropriate introduction to the topics considered. This is achieved through 10 chapters devoted to current topics of research addressed by different research groups within this area. These 10 chapters reflect advances corresponding to signals of different dimensionality. They go from mostly one dimensional signals in what would be the most traditional area of signal processing realm to RGB signals and to signals of very high dimensionality such as hyperspectral signals that can go up to dimensionalities of more than one thousand. The chapters have been thought out to provide an easy to follow introduction to the topics that are addressed, including the most relevant references, so that anyone interested in this field can get started in the area. They provide an overview of some of the problems in the area of signal and image processing for measurement systems and the approaches and techniques that relevant research groups within this area are employing to try to solve them which, in many instances are the state of the art of some of these topics.

Digital Signal Processing of an Electrocardiogram Measured with Non-touching Electrodes

Digital Signal Processing

This is an attempt to develop a biotelemetry receiver using digital signal processing technology and techniques. The receiver developed in this work is based on recovering signals that have been encoded using either Pulse Position Modulation (PPM) or Pulse Code Modulation (PCM) technique. A prototype has been developed using state-of-the-art digital signal processing technology. A Printed Circuit Board (PCB) is being developed based on the technique and technology described here. This board is intended to be used in the UCSF Fetal Monitoring system developed at NASA. The board is capable of handling a variety of PPM and PCM signals encoding signals such as ECG, temperature, and pressure. A signal processing program has also been developed to analyze the received ECG signal to determine heart rate. This system provides a base for using digital signal processing in biotelemetry receivers and other similar applications. Singh, Avtar and Hines, John and Sombs, Chris Ames Research Center NCC2-5173

2021 8th International Conference on Computer and Communication Engineering (ICCCE)
This book describes an ECG processing architecture that guides biomedical SoC developers, from theory to implementation and testing. The authors provide complete coverage of the digital circuit implementation of an ultra-low power biomedical SoC, comprised of a detailed description of an ECG processor implemented and fabricated on chip. Coverage also includes the challenges and tradeoffs of designing ECG processors. Describes digital circuit architecture for implementing ECG processing algorithms on chip; Includes coverage of signal processing techniques for ECG processing; Features ultra-low power circuit design techniques; Enables design of ECG processing architectures and their respective on-chip implementation.

ECG Signal Processing, Classification and Interpretation

The book is focused on the area of remote processing of ECG in the context of telecardiology, an emerging area in the field of Biomedical Engineering Application. Considering the poor infrastructure and inadequate numbers of physicians in rural healthcare clinics in India and other developing nations, telemedicine services assume special importance. Telecardiology, a specialized area of telemedicine, is taken up in this book considering the importance of cardiac diseases, which is prevalent in the underprivileged population. The main focus of this book is to discuss different aspects of ECG acquisition, its remote transmission and computerized ECG signal analysis for feature extraction. It also discusses ECG compression and application of standalone embedded systems, to develop a cost effective solution of a telecardiology system.

Biomedical Digital Signal Processing

Digital Signal Processing, Second Edition enables electrical engineers and technicians in the fields of biomedical, computer, and electronics engineering to master the essential fundamentals of DSP principles and practice. Many instructive worked examples are used to illustrate the material, and the use of mathematics is minimized for easier grasp of concepts. As such, this title is also useful to undergraduates in electrical engineering, and as a reference for science students and practicing engineers. The book goes beyond DSP theory, to show implementation of algorithms in hardware and software. Additional topics covered include adaptive filtering with noise reduction and echo cancellations, speech compression, signal sampling, digital filter realizations, filter design, multimedia applications, over-sampling, etc. More advanced topics are also covered, such as adaptive filters, speech compression such as PCM, u-law, ADPCM, and multi-rate DSP and oversampling ADC. New to this edition: MATLAB projects dealing with practical applications added throughout the book. New chapter (chapter 13) covering sub-band coding and waveform transforms, methods that have become popular in the DSP field. New applications included in many chapters, including applications of DFT to seismic signals, electrocardiography data, and vibration signals. All real-time C programs revised for the TMS320C6713 DSK. Covers DSP principles with emphasis on communications and control applications. Chapter objectives, worked examples, and end-of-chapter exercises aid the reader in grasping key concepts and solving related problems. Website with MATLAB programs for simulation and C programs for real-time DSP.

Applications of Digital Signal Processing

This paper describes the results of current research at DREA in which techniques of optimum array processing are being applied to active sonar. We are presenting these results at the Advanced Study Institute in order to illustrate some actual applications for such processing and to point out some of the practical considerations which arise in real systems. In particular, the paper concerns the problems which arise when the individual sensor elements have a complicated directivity pattern themselves. This is a common phenomenon in active systems where the receiving sensors are complex resonant structures and are housed in a dome or towed body presenting various baffling and diffraction effects. Most treatments of array processing consider ideal elements which have well behaved directivity properties and are transparent to the field. The results of this paper show that where these properties are not met, careful in situ array measurements are required, and even with such measurements practical array gains may not be as good as predictions based on ideal sensors.

Real-time Digital Signal Processing of ECG Signal

Books on linear systems typically cover both discrete and continuous systems together in one book. However, with coverage of this magnitude, not enough information is presented on either of the two subjects. Discrete linear systems warrant a book of their own, and Discrete Systems and Digital Signal Processing with MATLAB provides just that. It offers comprehensive coverage of both discrete linear systems and signal processing in one volume. This detailed book is firmly rooted in basic mathematical principles, and it includes many problems solved first by using analytical tools, then by using MATLAB. Examples that illustrate the theoretical concepts are provided at the end of each chapter.

Aspects of Signal Processing With Emphasis on Underwater Acoustics, Part 2

In this book the reader will find a collection of chapters authored/co-authored by a large number of experts around the world, covering the broad field of digital signal processing. This book intends to provide highlights of the current research in the digital signal processing area, showing the recent advances in this field. This work is mainly destined to researchers in the digital signal processing and related areas but it is also accessible to anyone with a scientific background desiring to have an up-to-date overview of this domain. Each chapter is self-contained and can be read independently of the others. These nineteen chapters present methodological advances and recent applications of digital signal processing in various domains as communications, filtering, medicine, astronomy, and image processing.
The book shows how the various paradigms of computational intelligence, employed either singly or in combination, can produce an effective structure for obtaining often vital information from ECG signals. The text is self-contained, addressing concepts, methodology, algorithms, and case studies and applications, providing the reader with the necessary background augmented with step-by-step explanation of the more advanced concepts. It is structured in three parts: Part I covers the fundamental ideas of computational intelligence together with the relevant principles of data acquisition, morphology and use in diagnosis; Part II deals with techniques and models of computational intelligence that are suitable for signal processing; and Part III details ECG system-diagnostic interpretation and knowledge acquisition architectures. Illustrative material includes: brief numerical experiments; detailed schemes, exercises and more advanced problems.

Analog-and-Algorithm-Assisted Ultra-low Power Biosignal Acquisition Systems

This Edited Volume gathers a selection of refereed and revised papers originally presented at the Third International Symposium on Signal Processing and Intelligent Recognition Systems (SIRS'17), held on September 13–16, 2017 in Manipal, India. The papers offer stimulating insights into biometrics, digital watermarking, recognition systems, image and video processing, signal and speech processing, pattern recognition, machine learning and knowledge-based systems. Taken together, they offer a valuable resource for all researchers and scientists engaged in the various fields of signal processing and related areas.

Developments and Applications for ECG Signal Processing

A practical guide to using the TMS320C31 DSP Starter Kit With applications and demand for high-performing digital signalprocessors expanding rapidly, it is becoming increasingly important for today’s students and practicing engineers to master real-time digital signal processing (DSP) techniques. Digital Signal Processing: Laboratory Experiments Using C and the TMS320C31 DSK offers users a practical and economical approach to understanding DSP principles, designs, and applications. Demonstrating Texas Instruments’ (TI) state-of-the-art, low-priced DSP Starter Kit (DSK), this book clearly illustrates and integrates practical aspects of real-time DSP implementation techniques and complex DSP concepts into lab exercises and experiments. TI’s TMS320C31 digital signal processor provides substantial performance benefits for designs that have floating-point capabilities supported by high-level language compilers. Most chapters begin with a theoretical discussion followed by representative examples. With numerous programming examples using TMS320C3x and C code included on disk, this easy-to-read text: * Covers DSK tools, the architecture, and instructions for the TMS320C31 processor * Illustrates input and output * Introduces the z-transform * Discusses finite impulse response (FIR) filters, including the effect of window functions * Covers infinite impulse response (IIR) filters * Discusses the development and implementation of the fast Fourier transform (FFT) * Examines utility of adaptive filters for different applications

Multiscale Signal Analysis and Modeling

Light & heavy current devices for communication and applications in Innovative Technologies to Serve Humanity

A Wireless Medical Surveillance System

The book shows how the various paradigms of computational intelligence, employed either singly or in combination, can produce an effective structure for obtaining often vital information from ECG signals. The text is self-contained, addressing concepts, methodology, algorithms, and case studies and applications, providing the reader with the necessary background augmented with step-by-step explanation of the more advanced concepts. It is structured in three parts: Part I covers the fundamental ideas of computational intelligence together with the relevant principles of data acquisition, morphology and use in diagnosis; Part II deals with techniques and models of computational intelligence that are suitable for signal processing; and Part III details ECG system-diagnostic interpretation and knowledge acquisition architectures. Illustrative material includes: brief numerical experiments; detailed schemes, exercises and more advanced problems.

ECG Acquisition and Automated Remote Processing

This research work is a part of a project towards developing an electrocardiogram measured with non-touching electrodes. One of the objectives is to make this device portable and implemented in a car environment. The sensors are composed of two E-field sensor boards which supply the ECG signal by capacity coupling to the signal conditioning circuits. These signal conditioners filter out some of the unwanted frequencies and amplify the ECG. This signal is given to an analog to digital converter which digitizes it and then the data are recorded. The main goal of this research is to process the recorded digitalized ECG waveforms through Matlab to get a signal as clean as possible with an acceptable signal to noise ratio. Different digital processing filters will be implemented and then the results will be displayed through different Matlab graphics. Another feature implemented in the digital processing is the QRS detection and the heart rate monitoring. Also included are discussions on the error probabilities, advantages and disadvantages of method used, future research and improvements.

Digital Signal Processing Based Biotelemetry Receivers

Multiscale Signal Analysis and Modeling presents recent advances in multiscale analysis and modeling using wavelets and other systems. This book also presents applications in digital signal processing using sampling theory and techniques from various function spaces, filter design, feature extraction and classification, signal and image representation/transmission, coding, nonparametric statistical signal processing, and statistical learning theory.

Advances in Signal Processing and Intelligent Recognition Systems

Developments and Applications for ECG Signal Processing: Modeling, Segmentation, and Pattern Recognition covers reliable techniques for ECG signal processing and their potential to significantly increase the applicability of ECG use in diagnosis.
This book details a wide range of challenges in the processes of acquisition, preprocessing, segmentation, mathematical modelling and pattern recognition in ECG signals, presenting practical and robust solutions based on digital signal processing techniques. Users will find this to be a comprehensive resource that contributes to research on the automatic analysis of ECG signals and extends resources relating to rapid and accurate diagnoses, particularly for long-term signals. Chapters cover classical and modern features surrounding ECG signals, ECG signal acquisition systems, techniques for noise suppression for ECG signal processing, a delineation of the QRS complex, mathematical modelling of T- and P-waves, and the automatic classification of heartbeats. Gives comprehensive coverage of ECG signal processing Presents development and parametrisation techniques for ECG signal acquisition systems Analyzes and compares distortions caused by different digital filtering techniques for noise suppression applied over the ECG signal Describes how to identify if a digitized ECG signal presents irreversible distortion through analysis of its frequency components prior to, and after, filtering Considers how to enhance QRS complexes and differentiate these from artefacts, noise, and other characteristic waves under different scenarios

Techno-Societal 2018

This paper presents a prediction error variance reduction procedure based on fractional digital differentiation with negative order. This reduction is achieved by increasing correlation in the signals. Applications to ECG signals show that savings of more than one bit per residual signal sample can be attained.

Digital Signal Processing Using MATLAB for Students and Researchers

Recent advancements and innovations in medical image and data processing have led to a need for robust and secure mechanisms to transfer images and signals over the internet and maintain copyright protection. The Handbook of Research on Information Security in Biomedical Signal Processing provides emerging research on security in biomedical data as well as techniques for accurate reading and further processing. While highlighting topics such as image processing, secure access, and watermarking, this publication explores advanced models and algorithms in information security in the modern healthcare system. This publication is a vital resource for academicians, medical professionals, technology developers, researchers, students, and practitioners seeking current research on intelligent techniques in medical data security.

Ambulation Analysis in Wearable ECG

Ambulation Analysis in Wearable ECG demonstrates why, due to recent developments, the wearable ECG recorder substantiates a significant innovation in the healthcare field. About this book: Examines the viability of wearable ECG in cardiac monitoring Includes chapters written by practitioners who have personally developed such hardware to write about the hardware details Bridges the gap between hardware and algorithmic developments with chapters that specifically discuss the hardware aspects and their corresponding calibration issues Presents a useful text for both practitioners and researchers in biomedical engineering and related interdisciplinary fields Assumes basic familiarity with digital signal processing and linear algebra.

Digital Signal Processing

Inhaltsangabe: Abstract: This thesis has the development of a Digital Signal Processor (DSP) based on an Electro-Cardiogram (ECG) analysis system as its main theme. The system measures cardiac signals using two surface ECG leads from which individual heartbeats and pulse trends are extracted. Processed information can be presented on any Bluetooth enabled Personal Digital Assistant (PDA). The system combines several technologies, e.g. signal measuring and forming unit, DSP hard- and software and a WAP1 server with Bluetooth interface. A basis for this project was a master's thesis that investigates and implements WAP over Bluetooth (see Chapters 5 and 6). The focus of this work is hardware and software design of the ECG measurement and DSP system. The DSP software includes implementation of medical real-time algorithms for heart beat detection, average beat and pulse trend calculation. All algorithms have been implemented using the C language. Inhaltsverzeichnis: Inhaltsverzeichnis: Abstract2 Acknowledgement3 Contents4 Figures6 1.Introduction8 1.1System overview8 1.2Functional description9 2.Introduction into heart anatomy, cardiac signals and measuring methods10 2.1The heart and the atrial contraction10 2.2Cardiac signal characterization and measuring methods12 3.Hardware14 3.1Hardware architecture14 3.2Analog measurement hardware design14 3.3.1System architecture15 3.2.1Patient safety aspects16 3.2.2Detailed system description17 3.3DSP hardware26 3.3.1Development board overview26 3.3.2TI TMS320C5402 DSP features27 3.3.3DSP and DSP board integration29 4.Software31 4.1DSP software architecture31 4.2Main program32 4.3Sensor data acquisition and voltage supervision33 4.3.1McBSP33 4.3.2DMA controller36 4.3.3Timer operation39 4.3.4Digital signal processing40 4.4.1Signal preprocessing41 4.4.2Beat detection and pulse calculation49 4.4.3Average beat and pulse trend calculation50 4.4.4Preampifier gain setting51 4.5WAP server communication51 4.5.1UART51 4.5.2EWS commands and UART ISR52 4.6Labview PC-application53 4.7Embedded WAP-server55 5.1Wireless Application Protocol55 5.1.1The WAP concept55 5.1.2WAP servers57 5.2Embedded WAP server (EWS)57 5.3Medical surveillance WAP application58 6.Bluetooth interface60 6.1Introduction into Bluetooth60 6.2WAP over Bluetooth (WOB) Implementation62 7.Conclusions63 8.References64 Appendix A - ECG measurements hardware65 Appendix B - DSP software source code73 Appendix C []

Bioelectrical Signal Processing in Cardiac and Neurological Applications

This book and its companion volume, LNCS vols. 6145 and 6146, constitute the proceedings of the International Conference
on Swarm Intelligence (ICSI 2010) held in Beijing, the capital of China, during June 12-15, 2010. ICSI 2010 was the first gathering in the world for researchers working on all aspects of swarm intelligence, and provided an academic forum for the participants to disseminate their new research findings and discuss emerging areas of research. It also created a stimulating environment for the participants to interact and exchange information on future challenges and opportunities of swarm intelligence research. ICSI 2010 received 394 submissions from about 1241 authors in 22 countries and regions (Australia, Belgium, Brazil, Canada, China, Cyprus, Hong Kong, Hungary, India, Islamic Republic of Iran, Japan, Jordan, Republic of Korea, Malaysia, Mexico, Norway, Pakistan, South Africa, Chinese Taiwan, UK, USA, Vietnam) across six continents (Asia, Europe, North America, South America, Africa, and Oceania). Each submission was reviewed by at least three reviewers. Based on rigorous reviews by the Program Committee members and reviewers, 185 high-quality papers were selected for publication in the proceedings with the acceptance rate of 46.9%. The papers are organized in 25 cohesive sections covering all major topics of swarm intelligence research and development.

Applications of Digital Signal Processing

The volume, complexity, and irregularity of computational data in modern algorithms and simulations necessitates an unorthodox approach to computing. Understanding the facets and possibilities of soft computing algorithms is necessary for the accurate and timely processing of complex data. Research Advances in the Integration of Big Data and Smart Computing builds on the available literature in the realm of Big Data while providing further research opportunities in this dynamic field. This publication provides the resources necessary for technology developers, scientists, and policymakers to adopt and implement new paradigms in computational methods across the globe. The chapters in this publication advance the body of knowledge on soft computing techniques through topics such as transmission control protocol for mobile ad hoc networks, feature extraction, comparative analysis of filtering techniques, big data in economic policy, and advanced dimensionality reduction methods.

Discrete Systems and Digital Signal Processing with MATLAB

Copyright code: f40f3a376cdda7f35c848cc4c94fafe9