Aspects of ECG Signal Processing with Application to Classification

Ultra Low Power ECG Processing System for IoT Devices

Biosignal Processing and Classification Using Computational Learning and Intelligence

Developments and Applications for ECG Signal Processing

This practical book is the first one-stop resource to offer a thorough, up-to-date treatment of the techniques and methods used in electrocardiogram (ECG) data analysis, from fundamental principles to the latest tools in the field. The book places emphasis on the selection, modeling, classification, and interpretation of data based on advanced signal processing and artificial intelligence techniques.

Recent advancements and innovations in medical image and data processing have led to a need for robust and secure mechanisms to transfer images and signals over the internet and maintain copyright protection. The Handbook of Research on Information Security in Biomedical Signal Processing provides emerging research on security in biomedical data as well as techniques for accurate reading and further processing. While highlighting topics such as image processing, secure access, and watermarking, this publication explores advanced models and algorithms in information security in the modern healthcare system. This publication is a vital resource for academicians, medical professionals, technology developers, researchers, students, and practitioners seeking current research on intelligent techniques in medical data security.

This book constitutes the refereed proceedings of the 13th Joint International Symposium on Artificial Intelligence and Natural Language Processing, iSAI-NLP2017, held in Prachuap Khiri Khan, Thailand, in August 2017, and the 10th International Conference on Knowledge, Information and Creativity Support Systems, KICSS2015, held in Phuket, Thailand, in November 2015. It presents 22 carefully reviewed full papers on the following topics: artificial intelligence; machine learning; decision support systems; data mining; data analysis; natural language processing; multilingual processing; language and ontology.
Sensing and Signal Processing in Smart Healthcare

Developments and Applications for ECG Signal Processing: Modeling, Segmentation, and Pattern Recognition covers reliable techniques for ECG signal processing and their potential to significantly increase the applicability of ECG use in diagnosis. This book details a wide range of challenges in the processes of acquisition, preprocessing, segmentation, mathematical modelling and pattern recognition in ECG signals, presenting practical and robust solutions based on digital signal processing techniques. Users will find this to be a comprehensive resource that contributes to research on the automatic analysis of ECG signals and extends resources relating to rapid and accurate diagnoses, particularly for long-term signals. Chapters cover classical and modern features surrounding ECG signals, ECG signal acquisition systems, techniques for noise suppression for ECG signal processing, a delineation of the QRS complex, mathematical modelling of T- and P-waves, and the automatic classification of heartbeats. Gives comprehensive coverage of ECG signal processing Presents development and parametrisation techniques for ECG signal acquisition systems Analyzes and compares distortions caused by different digital filtering techniques for noise suppression applied over the ECG signal Describes how to identify if a digitized ECG signal presents irreversible distortion through analysis of its frequency components prior to, and after, filtering Considers how to enhance QRS complexes and differentiate these from artefacts, noise, and other characteristic waves under different scenarios

Advances in Intelligent Informatics, Smart Technology and Natural Language Processing

The prime objective of this piece of work is to devise novel techniques for computer based classification of Electrocardiogram (ECG) arrhythmia with a focus on less computational time and better accuracy. As an initial stride in this direction, ECG beat classification is achieved by using feature extracting techniques to make a neural network (NN) system more effective. The feature extraction technique used is Wavelet Signal Processing. Coefficients from the discrete wavelet transform were used to represent the ECG diagnostic information and features were extracted using the coefficients and were normalised. These feature sets were then used in the classifier i.e. a simple feed forward back propagation neural network (FFBNN). This paper presents a detail study of the classification accuracy of ECG signal by using these four structures for computationally efficient early diagnosis. Neural network used in this study is a well-known neural network architecture named as multi-Layered perceptron (MLP) with back propagation training algorithm. The ECG signals have been taken from MIT-BIH ECG database, and are used in training to classify 3 different Arrhythmias out of ten arrhythmias. These are normal sinus rhythm, paced beat, left bundle branch block. Before testing, the proposed structures are trained by back propagation algorithm. The results show that the wavelet decomposition method is very effective and efficient for fast computation of ECG signal analysis in conjunction with the classifier.

Multiscale Signal Analysis and Modeling

The book shows how the various paradigms of computational intelligence, employed either singly or in combination, can produce an effective structure for obtaining often vital information from ECG signals. The text is self-contained, addressing concepts, methodology, algorithms, and case studies and applications, providing the reader with the necessary background augmented with step-by-step explanation of the more advanced concepts. It is structured in three parts: Part I covers the fundamental ideas of computational intelligence together with the relevant principles of data acquisition, morphology and use in diagnosis; Part II deals with techniques and models of computational intelligence that are suitable for signal processing; and Part III details ECG system-diagnostic interpretation and knowledge acquisition architectures. Illustrative material includes: brief numerical experiments; detailed schemes, exercises and more advanced problems.

Advanced Methods and Tools for ECG Data Analysis

This volume constitutes the refereed proceedings of the 9th International Conference on Image and Signal Processing, ICISP 2020, which was due to be held in Marrakesh, Morocco, in June 2020. The conference was cancelled due to the COVID-19 pandemic. The 40 revised full papers were carefully reviewed and selected from 84 submissions. The contributions presented in this volume were organized in the following topical sections: digital cultural heritage & color and spectral imaging; data and image processing for precision agriculture; machine learning application and innovation; biomedical imaging; deep learning and applications; pattern recognition; segmentation and retrieval; mathematical imaging & signal processing.
Biomedical Signal Processing for Healthcare Applications

This book describes an ECG processing architecture that guides biomedical SoC developers, from theory to implementation and testing. The authors provide complete coverage of the digital circuit implementation of an ultra-low power biomedical SoC, comprised of a detailed description of an ECG processor implemented and fabricated on chip. Coverage also includes the challenges and tradeoffs of designing ECG processors. Describes digital circuit architecture for implementing ECG processing algorithms on chip; Includes coverage of signal processing techniques for ECG processing; Features ultra-low power circuit design techniques; Enables design of ECG processing architectures and their respective on-chip implementation.

Machine Learning for Intelligent Decision Science

This book presents techniques necessary to predict cardiac arrhythmias, long before they occur, based on minimal ECG data. The authors describe the key information needed for automated ECG signal processing, including ECG signal pre-processing, feature extraction and classification. The adaptive and novel ECG processing techniques introduced in this book are highly effective and suitable for real-time implementation on ASICs.

Computational Tools and Techniques for Biomedical Signal Processing

This book presents an interdisciplinary paradigms of computational intelligence techniques and biomedical signal processing. The computational intelligence techniques outlined in the book will help to develop various ways to enhance and utilize signal processing algorithms in the field of biomedical signal processing. In this book, authors have discussed research, discoveries and innovations in computational intelligence, signal processing, and biomedical engineering that will be beneficial to engineers working in the field of health care systems. The book provides fundamental and initial level theory and implementation tools, so that readers can quickly start their research in these interdisciplinary domains. Provides an introduction to computational intelligence and biomedical signals, including swarm intelligence, soft computing methods, and classification techniques. Presents the fundamental signal processing and classification approach. Includes implementation of techniques with examples, general programming codes and Matlab scripts.

Classification and Clustering in Biomedical Signal Processing

E-Health applications facilitate the exchange of information between clinicians or between institutions, reducing costs, extending the scope and reach of medical facilities, enhancing the quality of service offered on- and off-site, and provides new means of medical supervision and preemptive medicine. Currently, the
of Computational Intelligence
And Interpretation A Comprehensive Framework

Read PDF Ecg Signal Processing Classification
And Interpretation A Comprehensive Framework
Of Computational Intelligence

integrated of medical networking and medical information systems is treated as an obvious need; standalone medical networking environments are no longer a reality and the term "telemedicine" is in practice used interchangeably with e-Health. This book provides an overview of the field of Networked e-Health applications and telemedicine and its supporting technologies. Chapters focus on signals, signal processing, electroencephalogram (EEG) and the Electrocardiogram (ECG or EKG), medical imaging, as well as a look at medical signal processing and classification from the point of view of urgent medical support, where not every possible type of medical equipment is readily available. Also covered is the encoding for transmission of medical data. Compression is of central importance, as is loss of information and ways to minimize it. The final section of the book addresses the design, implementation, and operation of e-Health systems.

Variant Construction from Theoretical Foundation to Applications

The development of techniques to analyze biomedical signals, such as electrocardiograms, has dramatically affected countless lives by making possible improved noninvasive diagnosis, online monitoring of critically ill patients, and rehabilitation and sensory aids for the handicapped. Rangaraj Rangayyan supplies a practical, hands-on field guide to this constantly evolving technology in Biomedical Signal Analysis, focusing on the diagnostic challenges that medical professionals continue to face. Dr. Rangayyan applies a problem-solving approach to his study. Each chapter begins with the statement of a different biomedical signal problem, followed by a selection of real-life case studies and the associated signals. Signal processing, modeling, or analysis techniques are then presented, starting with relatively simple "textbook" methods, followed by more sophisticated research approaches. The chapter concludes with one or more application solutions; illustrations of real-life biomedical signals and their derivatives are included throughout. Among the topics addressed are: Concurrent, coupled, and correlated processes Filtering for removal of artifacts Event detection and characterization Frequency-domain characterization Modeling biomedical systems Analysis of nonstationary signals Pattern classification and diagnostic decision The chapters also present a number of laboratory exercises, study questions, and problems to facilitate preparation for class examinations and practical applications. Biomedical Signal Analysis provides a definitive resource for upper-level under-graduate and graduate engineering students, as well as for practicing engineers, computer scientists, information technologists, medical physicists, and data processing specialists. An authoritative assessment of the problems and applications of biomedical signals, rooted in practical case studies

Advanced Biosignal Processing

The book is a compilation of selected papers from the conference on Physics and Control 2009, presenting a unified perspective underlying the the emergence and strategies related to the control of physical systems with emerging applications in physics, engineering, chemistry, biology and other natural sciences. The selected papers reflect the state-of-the-art of the more advanced theoretical and practical studies in the field of control of complex systems. The contributions provide a comprehensive view on some selected topics of particular importance at the disciplinary borderline between Physics and Control.

Biomedical Signal Analysis

Computing Methodologies 2019 will provide an outstanding international forum for scientists from all over the world to share ideas and achievements in the theory and practice of all areas of inventive systems which includes artificial intelligence, automation systems, computing systems, electronics systems, electrical and informative systems etc. Presentations should highlight computing methodologies as a concept that combines theoretical research and applications in automation, information and computing technologies. All aspects of inventive systems are of interest theory, algorithms, tools, applications, etc.

Computational Signal Processing and Analysis

Generally speaking, Biosignals refer to signals recorded from the human body. They can be either electrical (e. g. Electrocardiogram (ECG), Electroencephalogram (EEG), Electromyogram (EMG), etc.) or non-electrical (e. g. breathing, movements, etc.). The acquisition and processing of such signals play an important role in clinical routines. They are usually considered as major indicators which provide clinicians and physicians with useful information during diagnostic and monitoring processes. In some applications, the purpose is not necessarily medical. It may also be industrial. For instance, a real-time EEG system analysis can be used to control and analyze the vigilance of a car driver. In this case, the purpose of such a system basically consists of preventing crash risks. Furthermore, in certain other applications, biosignals (e. g. ECG, Respiratory Signal, EEG, etc.) can be used to control or analyze human emotions. This is the case of the famous polygraph system, also known as the “lie detector”, the efficiency of which remains open to debate! Thus, when one is dealing with biosignals, special attention must be given to their acquisition, their analysis and their processing capabilities which constitute the nal stage preceding the clinical diagnosis. Naturally, the diagnosis is based on the information provided by the processing system.
Computational Intelligence and Biomedical Signal Processing

This book examines the use of biomedical signal processing—EEG, EMG, and ECG—in analyzing and diagnosing various medical conditions, particularly diseases related to the heart and brain. In combination with machine learning tools and other optimization methods, the analysis of biomedical signals greatly benefits the healthcare sector by improving patient outcomes through early, reliable detection. The discussion of these modalities promotes better understanding, analysis, and application of biomedical signal processing for specific diseases. The major highlights of Biomedical Signal Processing for Healthcare Applications include biomedical signals, acquisition of signals, pre-processing and analysis, post-processing and classification of the signals, and application of analysis and classification for the diagnosis of brain- and heart-related diseases. Emphasis is given to brain and heart signals because incomplete interpretations are made by physicians of these aspects in several situations, and these partial interpretations lead to major complications. FEATURES Examines modeling and acquisition of biomedical signals of different disorders Discusses CAD-based analysis of diagnosis useful for healthcare Includes all important modalities of biomedical signals, such as EEG, EMG, MEG, ECG, and PCG Includes case studies and research directions, including novel approaches used in advanced healthcare systems This book can be used by a wide range of users, including students, research scholars, faculty, and practitioners in the field of biomedical engineering and medical image analysis and diagnosis.

Handbook of Research on Information Security in Biomedical Signal Processing

2020 International Conference on Computing and Information Technology (ICCIT-1441).

Biomedical Signal Processing and Artificial Intelligence in Healthcare is a new volume in the Developments in Biomedical Engineering and Bioelectronics series. This volume covers the basics of biomedical signal processing and artificial intelligence. It explains the role of machine learning in relation to processing biomedical signals and the applications in medicine and healthcare. The book provides background to statistical analysis in biomedical systems. Several types of biomedical signals are introduced and analyzed, including ECG and EEG signals. The role of Deep Learning, Neural Networks, and the implications of the expansion of artificial intelligence is covered. Biomedical Images are also introduced and processed, including segmentation, classification, and detection. This book covers different aspects of signals, from the use of hardware and software, and making use of artificial intelligence in problem solving. Dr Zgallai’s book has up to date coverage where readers can find the latest information, easily explained, with clear examples and illustrations. The book includes examples on the application of signal and image processing employing artificial intelligence to Alzheimer, Parkinson, ADHD, autism, and sleep disorders, as well as ECG and EEG signals. Developments in Biomedical Engineering and Bioelectronics is a 10-volume series which covers recent developments, trends and advances in this field. Edited by leading academicians in the field, and taking a multidisciplinary approach, this series is a forum for cutting-edge, contemporary review articles and contributions from key ‘up-and-coming’ academicians across the full subject area. The series serves a wide audience of university faculty, researchers and students, as well as industry practitioners. Coverage of the subject area and the latest advances and applications in biomedical signal processing and Artificial Intelligence. Contributions by recognized researchers and field leaders. On-line presentations, tutorials, application and algorithm examples.

Modelling and Analysis of Active Biopotential Signals in Healthcare, Volume 1

This book comprises a collection of papers by international experts, presented at the International Conference on NextGen Electronic Technologies (ICNETS-2017). ICNETS2 encompassed six symposia covering all aspects of electronics and communications engineering domains, including relevant nano/micro materials and devices. Featuring the latest research on computational signal processing and analysis, the book is useful to researchers, professionals, and students working in the core areas of electronics and their applications, especially signal processing, embedded systems, and networking.

Self-powered SoC Platform for Analysis and Prediction of Cardiac Arrhythmias

This book discusses feature engineering and computational intelligence solutions for ECG monitoring, with a particular focus on how these methods can be efficiently used to address the emerging challenges of dynamic, continuous & long-term individual ECG monitoring and real-time feedback. By doing so, it provides a “snapshot” of the current research at the interface between physiological signal analysis and machine learning. It also helps clarify a number of dilemmas and encourages further investigations in this field, to explore rational applications of feature engineering and computational intelligence in ECG monitoring. The book is intended for researchers and graduate students in the field of biomedical engineering, ECG signal processing, and intelligent healthcare.
This book provides a comprehensive review of progress in the acquisition and extraction of electrocardiogram signals. The coverage is extensive, from a review of filtering techniques to measurement of heart rate variability, to aortic pressure measurement, to strategies for assessing contractile effort of the left ventricle and more. The book concludes by assessing the future of cardiac signal processing, leading to next generation research which directly impact cardiac health care.

Real Time Classification of ECG Waveforms for Diagnosis of Diseases

First published in 1986: The presentation of the material in the book follows the flow of events of the general signal processing system. After the signal has been acquired, some manipulations are applied in order to enhance the relevant information present in the signal. Simple, Optimal, and adaptive filtering are examples of such manipulations. The detection of wavelets is of importance in biomedical signals; they can be detected from the enhanced signal by several methods. The signal very often contains redundancies. When effective storing, transmission, or automatic classification are required, these redundancies have to be extracted.

Image and Signal Processing for Networked E-health Applications

Signal Processing is undoubtedly the best real time implementation of a specific problem. Wavelet Transform is a very powerful technique for feature extraction and can be used along with neural network structures to build computationally efficient models for diagnosis of Biosignals (ECG in this case). This work utilises the above techniques for diagnosis of an ECG signal by determining its nature as well as exploring the possibility for real-time implementation of the above model. Daubechies wavelet transform and multi-layered perceptron are the computational techniques used for the realisation of the above model. The ECG signals were obtained from the MIT-BIH arrhythmia database and are used for the identification of our different types of arrhythmias. The identification was implemented real-time in SIMULINK, to simulate the detection model under test condition and verify its workability.

Biomedical Signal Analysis

This volume presents the proceedings of the International Conference on Medical and Biological Engineering held from 16 to 18 March 2017 in Sarajevo, Bosnia and Herzegovina. Focusing on the theme of ‘Pursuing innovation. Shaping the future’, it highlights the latest advancements in Biomedical Engineering and also presents the latest findings, innovative solutions and emerging challenges in this field. Topics include: - Biomedical Signal Processing - Biomedical Imaging and Image Processing - Biosensors and Bioinstrumentation - Bio-Micro/Nano Technologies - Biomaterials - Biomechanics, Robotics and Minimally Invasive Surgery - Cardiovascular, Respiratory and Endocrine Systems Engineering - Neural and Rehabilitation Engineering - Molecular, Cellular and Tissue Engineering - Bioinformatics and Computational Biology - Clinical Engineering and Health Technology Assessment - Health Informatics, E-Health and Telemedicine - Biomedical Engineering Education - Pharmaceutical Engineering

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques

This book focuses on analysis and modelling of active bio potential signals addressing the real time challenges in biomedical signal processing used in a variety of applications such as analysis, classification and identification of different disorders in healthcare systems.

Image and Signal Processing

Multiscale Signal Analysis and Modeling presents recent advances in multiscale analysis and modeling using wavelets and other systems. This book also presents applications in digital signal processing using sampling theory and techniques from various function spaces, filter design, feature extraction and classification, signal and image representation/transmission, coding, nonparametric statistical signal processing, and statistical learning theory.

Classification of ECG Signals

Biomedical signal processing in the medical field has helped optimize patient care and diagnosis within medical facilities. As technology in this area continues to advance, it has become imperative to evaluate other ways these computation techniques could be implemented. Computational Tools and Techniques for Biomedical Signal Processing investigates high-performance computing techniques being utilized in hospital information systems. Featuring comprehensive coverage on various theoretical perspectives, best
practices, and emergent research in the field, this book is ideally suited for computer scientists, information technologists, biomedical engineers, data-processing specialists, and medical physicists interested in signal processing within medical systems and facilities.

Feature Engineering and Computational Intelligence in ECG Monitoring

Electrocardiogram (ECG) plays an enormous role in the medical field. An electrocardiograph is a device used in cardiology, which records heart's electrical signals over time. ECG can be used to determine various heart diseases or damages to the heart along with the pace at which the heart beats as well as the effects of drugs or devices used to control the heart. The interpretation of the ECG signals is an application of pattern recognition. The technique used in this project integrates the study of the ECG signals and their classification. Analysis of ECG signals is done using neural network pattern recognition and classification methods. The study includes simulation of ECG signals, comparison between ECG signals, and detection of any abnormalities in the signal by using effective learning algorithms & pattern recognition techniques. The processed signals used in this project are obtained from an arrhythmia database, which was developed for research in cardiac electrophysiology by Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH). The neural clustering application available in the pattern recognition tool software is used to classify ECG signals based on self-organizing maps. Self-organizing maps are used to cluster the data, based on the similarity and topology, which reduces the dimensionality of the data. Thus, after training the network using the classification tool, a given ECG signal can be classified as normal or arrhythmic signal based on its features.

Biomedical Signal Processing and Artificial Intelligence in Healthcare

Anomaly Detection and Complex Event Processing over IoT Data Streams: With Application to eHealth and Patient Data Monitoring presents advanced processing techniques for IoT data streams and the anomaly detection algorithms over them. The book brings new advances and generalized techniques for processing IoT data streams, semantic data enrichment with contextual information at Edge, Fog and Cloud as well as complex event processing in IoT applications. The book comprises fundamental models, concepts and algorithms, architectures and technological solutions as well as their application to eHealth. Case studies, such as the bio-metric signals stream processing are presented -the massive amount of raw ECG signals from the sensors are processed dynamically across the data pipeline and classified with modern machine learning approaches including the Hierarchical Temporal Memory and Deep Learning algorithms. The book discusses adaptive solutions to IoT stream processing that can be extended to different use cases from different fields of eHealth, to enable a complex analysis of patient data in a historical, predictive and even prescriptive application scenarios. The book ends with a discussion on ethics, emerging research trends, issues and challenges of IoT data stream processing. Provides the state-of-the-art in IoT Data Stream Processing, Semantic Data Enrichment, Reasoning and Knowledge Covers extraction (Anomaly Detection) Illustrates new, scalable and reliable processing techniques based on IoT stream technologies Offers applications to new, real-time anomaly detection scenarios in the health domain

Using Neural Networks for the Recognition of Cardiac ECG Signals

The book will help assist a reader in the development of techniques for analysis of biomedical signals and computer aided diagnoses with a pedagogical examination of basic and advanced topics accompanied by over 350 figures and illustrations. Wide range of filtering techniques presented to address various applications 800 mathematical expressions and equations Practical questions, problems and laboratory exercises Includes fractals and chaos theory with biomedical applications

Wavelet Signal Processing of Physiologic Waveforms

This open access book presents theoretical framework and sample applications of variant construction. The first part includes the components variant logic, variant measurements, and variant maps, while the second part covers sample applications such as variation with functions, variant stream ciphers, quantum interference, classical/quantum random sequences, whole DNA sequences, and multiple-valued pulse sequences. Addressing topics ranging from logic and measuring foundation to typical applications and including various illustrated maps, it is a valuable guide for theoretical researchers in discrete mathematics; computing-, quantum- and communication scientists; big data engineers; as well as graduate and upper undergraduate students.

ECG Signal Processing, Classification and Interpretation

An electrocardiogram (ECG) is a bioelectrical signal which records the heart’s electrical activity versus time. It is an important diagnostic tool for assessing heart functions. In this book, pattern recognition techniques are used for the interpretation of an ECG signal. The techniques used in this pattern recognition application are, signal pre-processing, QRS detection, feature extraction and artificial neural
network for signal and cardiac conditions (healthy or a certain disease) classification. In this book, the
signal processing and neural network toolbox are used in Matlab environment. The processed signal
source came from the Massachusetts Institute of Technology Beth Israel Hospital (MIT-BIH) arrhythmia
database which was developed for research in cardiac electrophysiology. Three conditions of ECG
waveform were selected from MIT-BIH database in this book. The ECG samples were pre-processed, then
features representing the each sample were extracted to produce a set of features that can be used in a
neural network to make the classification of samples and the recognition rates were recorded. The book is
focused on finding an easy but reliable feature extraction method.

From Physics to Control Through an Emergent View

Biosignal Processing and Classification Using Computational Learning and Intelligence: Principles,
Algorithms and Applications posits an approach for biosignal processing and classification using
computational learning and intelligence, highlighting that the term biosignal refers to all kinds of signals
that can be continuously measured and monitored in living beings. The book is composed of five relevant
parts. Part One is an introduction to biosignals and Part Two describes the relevant techniques for
biosignal processing, feature extraction and feature selection/dimensionality reduction. Part Three
presents the fundamentals of computational learning (machine learning). Then, the main techniques of
computational intelligence are described in Part Four. The authors focus primarily on the explanation of
the most used methods in the last part of this book, which is the most extensive portion of the book. This
part consists of a recapitulation of the newest applications and reviews in which these techniques have
been successfully applied to the biosignals’ domain, including EEG-based Brain-Computer Interfaces (BCI)
focused on P300 and Imagined Speech, emotion recognition from voice and video, leukemia recognition,
infant cry recognition, EEG-based ADHD identification among others. Provides coverage of the
fundamentals of signal processing, including sensing the heart, sending the brain, sensing human acoustic,
and sensing other organs Includes coverage biosignal pre-processing techniques such as filtering, artifict
removal, and feature extraction techniques such as Fourier transform, wavelet transform, and MFCC.
Covers the latest techniques in machine learning and computational intelligence, including Supervised
Learning, common classifiers, feature selection, dimensionality reduction, fuzzy logic, neural networks,
Deep Learning, bio-inspired algorithms, and Hybrid Systems Written by engineers to help engineers,
computer scientists, researchers, and clinicians understand the technology and applications of
computational learning to biosignal processing

Biomedical Signal Processing

In the last decade, we have witnessed the rapid development of electronic technologies that are
transforming our daily lives. Such technologies are often integrated with various sensors that facilitate the
collection of human motion and physiological data and are equipped with wireless communication modules
such as Bluetooth, radio frequency identification, and near-field communication. In smart healthcare
applications, designing ergonomic and intuitive human–computer interfaces is crucial because a system
that is not easy to use will create a huge obstacle to adoption and may significantly reduce the efficacy of
the solution. Signal and data processing is another important consideration in smart healthcare
applications because it must ensure high accuracy with a high level of confidence in order for the
applications to be useful for clinicians in making diagnosis and treatment decisions. This Special Issue is a
collection of 10 articles selected from a total of 26 contributions. These contributions span the areas of
signal processing and smart healthcare systems mostly contributed by authors from Europe, including
Italy, Spain, France, Portugal, Romania, Sweden, and Netherlands. Authors from China, Korea, Taiwan,
Indonesia, and Ecuador are also included.

2019 3rd International Conference on Computing Methodologies and
Communication (ICCMC)

Advanced techniques in image processing have led to many innovations supporting the medical field,
especially in the area of disease diagnosis. Biomedical imaging is an essential part of early disease
detection and often considered a first step in the proper management of medical pathological conditions.
Classification and Clustering in Biomedical Signal Processing focuses on existing and proposed methods
for medical imaging, signal processing, and analysis for the purposes of diagnosing and monitoring patient
conditions. Featuring the most recent empirical research findings in the areas of signal processing for
biomedical applications with an emphasis on classification and clustering techniques, this essential
publication is designed for use by medical professionals, IT developers, and advanced-level graduate
students.

ECG Signal Processing, Classification and Interpretation

This book constitutes the proceedings of the First International Conference on Intelligent Robotics and
Manufacturing, IRAM 2012, held in Kuala Lumpur, Malaysia, in November 2012. The 64 revised full papers
included in this volume were carefully reviewed and selected from 102 initial submissions. The papers are organized in topical sections named: mobile robots, intelligent autonomous systems, robot vision and robust, autonomous agents, micro, meso and nano-scale automation and assembly, flexible manufacturing systems, CIM and micro-machining, and fabrication techniques.

CMBEBIH 2017

The book discusses machine learning-based decision-making models, and presents intelligent, hybrid and adaptive methods and tools for solving complex learning and decision-making problems under conditions of uncertainty. Featuring contributions from data scientists, practitioners and educators, the book covers a range of topics relating to intelligent systems for decision science, and examines recent innovations, trends, and practical challenges in the field. The book is a valuable resource for academics, students, researchers and professionals wanting to gain insights into decision-making.

Copyright code: 0e3634eabac62ae5a626900749edff