Digital Processing Of Synthetic Aperture Radar Data Algorithms And Implementation With Cdrom Artech House


Synthetic Impulse and Aperture Radar (SIAR) An authoritative work on Synthetic Aperture Radar system engineering, with key focus on high resolution imaging, moving target indication, and system engineering technology. Synthetic Aperture Radar (SAR) is a powerful microwave remote sensing technique that is used to create high resolution two or three-dimensional representations of objects, such as landscapes, independent of weather conditions and sunlight illumination. SAR technology is a multidisciplinary field that involves microwave technology, antenna technology, signal processing, and image information processing. The use of SAR technology continues to grow at a rapid pace in a variety of applications such as high-resolution wide-swath observation, multi-azimuth information acquisition, high-temporal information acquisition, 3-D terrain mapping, and image quality improvement. Design Technology of Synthetic Aperture Radar provides detailed coverage of the fundamental concepts, theories, technology, and design of SAR systems and sub-systems. Supported by the author’s over two decades of research and practice experience in the field, this in-depth volume systematically describes SAR design and presents the latest research developments. Providing examination of all topics relevant to SAR—from radar and antenna system design to receiver technology and signal and image information processing—this comprehensive resource: Provides wide-ranging,
Get Free Digital Processing Of Synthetic Aperture Radar Data Algorithms And Implementation With Cdrom Artech House

up-to-date examination of all major topics related to SAR science, systems, and software Includes guidelines to conduct grounding system designs and analysis Offers coverage of all SAR algorithm classes and detailed SAR algorithms suitable for enabling software implementations Surveys SAR and computed imaging literature of the last sixty years Emphasizes high resolution imaging, moving target indication, and system engineering Design Technology of Synthetic Aperture Radar is indispensable for graduate students majoring in SAR system design, microwave antenna, signal and information processing as well as engineers and technicians involved in SAR system techniques.

Synthetic Aperture Sonar Principles of Synthetic Aperture Radar Imaging: A System Simulation Approach demonstrates the use of image simulation for SAR. It covers the various applications of SAR (including feature extraction, target classification, and change detection), provides a complete understanding of SAR principles, and illustrates the complete chain of a SAR operation. The book places special emphasis on a ground-based SAR, but also explains space and air-borne systems. It contains chapters on signal speckle, radar-signal models, sensor-trajectory models, SAR-image focusing, platform-motion compensation, and microwave-scattering from random media. While discussing SAR image focusing and motion compensation, it presents processing algorithms and applications that feature extraction, target classification, and change detection. It also provides samples of simulation on various scenarios, and includes simulation flowcharts and results that are detailed throughout the book. Introducing SAR imaging from a systems point of view, the author: Considers the recent development of MIMO SAR technology Includes selected GPU implementation Provides a numerical analysis of system parameters (including platforms, sensor, and image focusing, and their influence) Explores wave-target interactions, signal transmission and reception, image formation, motion compensation Covers all platform motion compensation and error analysis, and their impact on final image radiometric and geometric quality Describes a ground-based SFMCW system Principles of Synthetic Aperture Radar Imaging: A System Simulation Approach is dedicated to the use, study, and development of SAR systems. The book focuses on image formation or focusing, treats platform motion and image focusing, and is suitable for students, radar engineers, and microwave remote sensing researchers.

MIMO Radar Signal Processing About the Book: - Digital Signal Processing Fundamentals Digital Signal Processing (DSP), as the term suggests, is the processing of signals using digital computers. These signals might be anything transferred from an analog domain to a digital form (e.g., temperature and pressure sensors, voices over a telephone, images from a camera, or data transmittal though computes). As a result, understanding the whole spectrum of DSP technology can be a daunting task for electrical engineering professionals and students alike. Digital Signal Processing Fundamentals provides a comprehensive look at DSP by introducing the important mathematical processes and then providing several application-specific tutorials for practicing the techniques learned. Beginning with general theory, including Fourier Analysis, the mathematics of complex numbers, Fourier transforms, differential equations, analog and digital filters, and much more; the book then delves into Matlab and Scilab tutorials with examples on solving practical engineering problems, followed by software applications on image processing and audio processing - complete with all the algorithms and source code. This is an invaluable resource for anyone seeking to understand how DSP works. Features: Provides a comprehensive overview and introduction of digital signal processing technology. Provides application with software algorithms Explains the concept of Nyquist frequency, orthogonal functions and method of finding Fourier coefficients Includes a CD-ROM with the source code for the projects plus Matlab and Scilab that generate graphs, figures in

Page 2/11
Get Free Digital Processing Of Synthetic Aperture Radar Data Algorithms And Implementation With Cdrom Artech House

the book, and third party application software Discusses the techniques of digital filtering and windowing of input data, including: Butterworth, Chebyshev, and elliptic filter formulation. Table Of Contents : Fourier Analysis Complex Number Arithmetic The Fourier Transform Solutions of Differential Equations Laplace Transforms and z-Transforms Filter Design Digital Filters The FIR Filters Appendix A : Matlab Tutorial Appendix B : Scilab Tutorial Appendix C : Digital Filter Applications Appendix D : About the CD-ROM Appendix E : Software Licenses Appendix F : Bibliography Index About Author :- Ashfaq A. Khan (Baton Rouge, LA) is a senior software engineer for LIGO Livingston Observatory, with over 20 years of experience in system design. He has conducted several workshop and is the author of Practical Linux Programming: Device Drivers, Embedded Systems, and the Internet.

Synthetic Aperture Radar and Digital Processing Synthetic Aperture Radar (SAR) is critical for remote sensing. It works day and night, in good weather or bad. Bistatic SAR is a new kind of SAR system, where the transmitter and receiver are placed on two separate platforms. Bistatic SAR is one of the most important trends in SAR development, as the technology renders SAR more flexible and safer when used in military environments. Imaging is one of the most difficult and important aspects of bistatic SAR data processing. Although traditional SAR signal processing is fully developed, bistatic SAR has a more complex system structure, so signal processing is more challenging. Focusing on imaging aspects of bistatic SAR signal processing, this book covers resolution analysis, echo generation methods, imaging algorithms, imaging parameter estimation, and motion compensation methods. The book is ideal for researchers and engineers in SAR signal and data processing, as well as those working in bistatic and multistatic radar imaging, and in the radar sciences. Graduate students with a background in radar who are interested in bistatic and multistatic radar will find this book a helpful reference. Gives a general and updated framework for image formation using signal processing aspects. Starts with an introduction to traditional SAR before moving onto more advanced topics. Offers readers a range of exhaustive tools to process signals and form images. Provides a solid reference for the imaging of other complicated SAR Sample image synthesis exercises are available from the book's companion site.

Digital Processing of Synthetic Aperture Radar Data

Synthetic Aperture Radar Signal Processing with MATLAB Algorithms

Digital Processing of Synthetic Aperture Radar Data This book is based on the latest research on ISAR imaging of moving targets and non-cooperative target recognition (NCTR). With a focus on the advances and applications, it provides readers with a working knowledge of various algorithms of ISAR imaging of targets and implementation with MATLAB.

Digital Signal Processing for Spaceborne Synthetic Aperture Radar Advances in DSP (digital signal processing) have radically altered the design and usage of radar systems -- making it essential for both working engineers as well as students to master DSP techniques. This text, which evolved from the author's own teaching, offers a rigorous, in-depth introduction to today's complex radar DSP technologies. Contents: Introduction to Radar Systems * Signal Models * Sampling and Quantization of Pulsed Radar Signals * Radar Waveforms * Pulse Compression Waveforms * Doppler Processing * Detection Fundamentals * Constant False Alarm Rate (CFAR) Detection * Introduction to Synthetic Aperture Imaging

Page 3/11
Real-time Digital Signal Processing Systems for Synthetic Aperture Radar Systems

Research supported by this grant has been concentrated in four distinct, but related projects: (1) an analysis of inherent phase distortion in rectangular and polar format FFT processing algorithms, (2) a SAR computer simulation with polar format recording, (3) a study of 2D interpolators for polar-to-rectangular coordinate transformation, and (4) an investigation of number theoretic concepts for high speed failure resistant digital processors required in real-time SAR systems. (Author).

Synthetic Aperture Radar and Digital Processing

Modern airborne and spaceborne imaging radars, known as synthetic aperture radars (SARs), are capable of producing high-quality pictures of the earth's surface while avoiding some of the shortcomings of certain other forms of remote imaging systems. Primarily, radar overcomes the nighttime limitations of optical cameras, and the cloud-cover limitations of both optical and infrared imagers. In addition, because imaging radars use a form of coherent illumination, they can be used in certain special modes such as interferometry, to produce some unique derivative image products that incoherent systems cannot. One such product is a highly accurate digital terrain elevation map (DTEM). The most recent (ca. 1980) version of imaging radar, known as spotlight-mode SAR, can produce imagery with spatial resolution that begins to approach that of remote optical imagers. For all of these reasons, synthetic aperture radar imaging is rapidly becoming a key technology in the world of modern remote sensing.

Much of the basic 'workings' of synthetic aperture radars is rooted in the concepts of signal processing. Starting with that premise, this book explores in depth the fundamental principles upon which the spotlight mode of SAR imaging is constructed, using almost exclusively the language, concepts, and major building blocks of signal processing.

Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach is intended for a variety of audiences. Engineers and scientists working in the field of remote sensing but who do not have experience with SAR imaging will find an easy entrance into what can seem at times a very complicated subject. Experienced radar engineers will find that the book describes several modern areas of SAR processing that they might not have explored previously, e.g. interferometric SAR for change detection and terrain elevation mapping, or modern non-parametric approaches to SAR autofocus. Senior undergraduates (primarily in electrical engineering) who have had courses in digital signal and image processing, but who have had no exposure to SAR could find the book useful in a one-semester course as a reference.

Multi-Antenna Synthetic Aperture Radar

Synthetic aperture radar provides broad-area imaging at high resolutions, which is used in applications such as environmental monitoring, earth-resource mapping, and military systems. This book presents the tools required for the digital processing of synthetic aperture radar images. They are of three types: (a) the elements of physics, (b) mathematical models and (c) image processing methods adapted to particular applications.

A Digital Signal Processing View of Strip-mapping Synthetic Aperture Radar

Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms

The book gives an excellent theoretical and practical background of SAR in general and specifically of spotlight SAR. The rich experience of the authors in spotlight SAR processing is reflected by a very detailed summary of the associated theory as well as a lot of SAR image examples. These images illustrate the techniques described in the book and provide a valuable connection to practice. This book can be highly recommended to all scientists and engineers involved in SAR system design and SAR data evaluation.---International
Spotlight Synthetic Aperture Radar

Bistatic SAR Data Processing Algorithms Written for students, remote sensing specialists, researchers and SAR system designers, Processing of SAR Data shows how to produce quality SAR images. In particular, this practical reference presents new methods and algorithms concerning the interferometric processing of SAR data with emphasis on system and signal theory, namely how SAR imagery is formed, how interferometry SAR images are created, and a detailed mathematical description of different focussing algorithms. Starting with the processing basics and progressing to the final geo-coded SAR data product, the book describes the complete processing steps in detail. Algorithms based on the effects of side-looking geometry are developed to correct foreshortening, shadowing and layover.

Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach Written from a signal processing point of view, this authoritative volume on digital processing of synthetic aperture radar data is geared toward professionals and students with a general electrical engineering background.

New Techniques in Digital Signal Processing for Synthetic Aperture Radar One of the key milestones of radar remote sensing for civil applications was the launch of the European Remote Sensing Satellite 1 (ERS 1) in 1991. The platform carried a variety of sensors; the Synthetic Aperture Radar (SAR) is widely cons- ered to be the most important. This active sensing technique provides all-day and all-weather mapping capability of considerably ?ne spatial resolution. ERS 1 and its sister system ERS 2 (launch 1995) were primarily designed for ocean app- cations, but soon the focus of attention turned to onshore mapping. Examples for typical applications are land cover clas?cation also in tropical zones and mo- toring of glaciers or urban growth. In parallel, international Space Shuttle Missions dedicated to radar remote sensing were conducted starting already in the 1980s. The most prominent were the SIR-C/X-SAR mission focussing on the investigation of multi- frequency and multi-polarization SAR data and the famous Shuttle Radar Topography Mission (SRTM). Data acquired during the latter enabled to derive a DEM of almost global coverage by means of SAR Interferometry. It is indispe- ableeventodayandformanyregionsthebestelevationmodelavailable. Differential SAR Interferometry based on time series of imagery of the ERS satellites and their successor Envisat became an important and unique technique for surface defor- tion monitoring. The spatial resolution of those devices is in the order of some tens of meters.

Using Post-correlation Signal Processing to Improve Digital SAR (synthetic Aperture Radar) Imagery An up-to-date analysis of the SAR wavefront reconstruction signal theory and its digital implementation With the advent of fast computing and digital information processing techniques, synthetic aperture radar (SAR) technology has become both more powerful and more accurate. Synthetic Aperture Radar Signal Processing with MATLAB Algorithms addresses these recent developments, providing a complete, up-to-date analysis of SAR and its associated digital signal processing algorithms. This book introduces the wavefront reconstruction signal theory that underlies the best SAR imaging methods and provides clear guidelines to system design, implementation, and applications in diverse areas-from airborne reconnaissance to topographic imaging of ocean floors to surveillance and air traffic control to medical imaging techniques, and numerous others. Enabling professionals in radar signal and image processing to use
Get Free Digital Processing Of Synthetic Aperture Radar Data Algorithms And Implementation With Cdsrom Artech House

synthetic aperture technology to its fullest potential, this work: * Includes M-files to supplement this book that can be retrieved from The MathWorks anonymous FTP server at ftp://ftp.mathworks.com/pub/books/soumekh * Provides practical examples and results from real SAR, ISAR, and CSAR databases * Outlines unique properties of the SAR signal that cannot be found in other information processing systems * Examines spotlight SAR, stripmap SAR, circular SAR, and monopulse SAR modalities * Discusses classical SAR processing issues such as motion compensation and radar calibration

Design Technology of Synthetic Aperture Radar Digital Signal Processing 101: Everything You Need to Know to Get Started provides a basic tutorial on digital signal processing (DSP). Beginning with discussions of numerical representation and complex numbers and exponentials, it goes on to explain difficult concepts such as sampling, aliasing, imaginary numbers, and frequency response. It does so using easy-to-understand examples with minimum mathematics. In addition, there is an overview of the DSP functions and implementation used in several DSP-intensive fields or applications, from error correction to CDMA mobile communication to airborne radar systems. This book has been updated to include the latest developments in Digital Signal Processing, and has eight new chapters on: Automotive Radar Signal Processing Space-Time Adaptive Processing Radar Field Oriented Motor Control Matrix Inversion algorithms GPUs for computing Machine Learning Entropy and Predictive Coding Video compression Features eight new chapters on Automotive Radar Signal Processing, Space-Time Adaptive Processing Radar, Field Oriented Motor Control, Matrix Inversion algorithms, GPUs for computing, Machine Learning, Entropy and Predictive Coding, and Video compression Provides clear examples and a non-mathematical approach to get you up to speed quickly Includes an overview of the DSP functions and implementation used in typical DSP-intensive applications, including error correction, CDMA mobile communication, and radar systems

Digital Signal Processing 101 This book describes the application of polarimetric synthetic aperture radar to earth remote sensing based on research at the NASA Jet Propulsion Laboratory (JPL). This book synthesizes all current research to provide practical information for both the newcomer and the expert in radar polarimetry. The text offers a concise description of the mathematical fundamentals illustrated with many examples using SAR data, with a main focus on remote sensing of the earth. The book begins with basics of synthetic aperture radar to provide the basis for understanding how polarimetric SAR images are formed and gives an introduction to the fundamentals of radar polarimetry. It goes on to discuss more advanced polarimetric concepts that allow one to infer more information about the terrain being imaged. In order to analyze data quantitatively, the signals must be calibrated carefully, which the book addresses in a chapter summarizing the basic calibration algorithms. The book concludes with examples of applying polarimetric analysis to scattering from rough surfaces, to infer soil moisture from radar signals.

Introduction to Synthetic Aperture Radar: Concepts and Practice

Digital Processing of Synthetic Aperture Optical Imagery

Fundamentals of Radar Signal Processing Explore the principles and applications of synthetic aperture radar. This comprehensive guide offers a solid grounding in synthetic aperture radar (SAR) fundamentals and techniques. Written by a remote sensing and signal processing expert, Introduction to Synthetic Aperture Radar: Concepts and Practice clearly explains data collection, image formation, error correction, and image quality. You
will get concise descriptions of commonly used image formation algorithms, including the Range-Doppler Algorithm (RDA) and the Polar Formatting Algorithm (PFA). Continuous wave LFM systems, interferometry, polarimetry, and moving objects are discussed in detail. Coverage includes: Origins of synthetic aperture radar Ranging and imaging Image formation and image processing tools Linear frequency-modulated chirp Image formation algorithms for quadrature demodulated data Image formation algorithms for dechirped data Autofocus Image quality and speckle reduction Linear frequency-modulated continuous wave systems Remote sensing Interferometry Moving objects in SAR

Design Technology of Synthetic Aperture Radar Radar, like most well developed areas, has its own vocabulary. Words like Doppler frequency, pulse compression, mismatched filter, carrier frequency, in-phase, and quadrature have specific meaning to the radar engineer. In fact, the word radar is actually an acronym for RDio Detection And Range ng. Even though these words are well defined, they can act as road blocks which keep people without a radar background from utilizing the large amount of data, literature, and expertise within the radar community. This is unfortunate because the use of digital radar processing techniques has made possible the analysis of radar signals on many general purpose digital computers. Of special interest are the surface mapping radars, such as the Seasat and the shuttle imaging radars, which utilize a technique known as synthetic aperture radar (SAR) to create high resolution images (pictures). This data appeals to cartographers, agronomists, oceanographers, and others who want to perform image enhancement, parameter estimation, pattern recognition, and other information extraction techniques on the radar imagery. The first chapter presents the basics of radar processing: techniques for calculating range (distance) by measuring round trip propagation times for radar pulses. This is the same technique that sightseers use when calculating the width of a canyon by timing the round trip delay using echoes. In fact, the corresponding approach in radar is usually called the pulse echo technique.

Imaging with Synthetic Aperture Radar Build your knowledge of SAR/ISAR imaging with this comprehensive and insightful resource. The newly revised Second Edition of Inverse Synthetic Aperture Radar Imaging with MATLAB Algorithms covers in greater detail the fundamental and advanced topics necessary for a complete understanding of inverse synthetic aperture radar (ISAR) imaging and its concepts. Distinguished author and academician, Caner Özdemir, describes the practical aspects of ISAR imaging and presents illustrative examples of the radar signal processing algorithms used for ISAR imaging. The topics in each chapter are supplemented with MATLAB codes to assist readers in better understanding each of the principles discussed within the book. This new edition includes discussions of the most up-to-date topics to arise in the field of ISAR imaging and ISAR hardware design. The book provides a comprehensive analysis of advanced techniques like Fourier-based radar imaging algorithms, and motion compensation techniques along with radar fundamentals for readers new to the subject. The author covers a wide variety of topics, including: Radar fundamentals, including concepts like radar cross section, maximum detectable range, frequency modulated continuous wave, and doppler frequency and pulsed radar. The theoretical and practical aspects of signal processing algorithms used in ISAR imaging. The numeric implementation of all necessary algorithms in MATLAB ISAR hardware, emerging topics on SAR/ISAR focusing algorithms such as bistatic ISAR imaging, polarimetric ISAR imaging, and near-field ISAR imaging. Applications of SAR/ISAR imaging techniques to other radar imaging problems such as thru-the-wall radar imaging and ground-penetrating radar imaging. Perfect for graduate students in the fields of electrical and electronics engineering, electromagnetism, imaging radar, and physics. Inverse Synthetic Aperture Radar Imaging
Get Free Digital Processing Of Synthetic Aperture Radar Data Algorithms And Implementation With CDrom Artech House

With MATLAB Algorithms also belongs on the bookshelves of practicing researchers in the related areas looking for a useful resource to assist them in their day-to-day professional work.

LD.

Synthetic Aperture Radar Polarimetry The synthetic aperture approach offers an attractive method for obtaining high resolution imagery with low mass, space-borne optical telescopes. This report presents a simple but effective method which allows the processing of dilute-array synthetic aperture optical data in such a way that aberration effects, introduced by unspecified improper positioning of telescope mirror segments can be removed. It is especially well-suited to two-mirror-segment synthetic aperture telescopes, which are characterized by low mass and comparatively good signal-to-noise ratio characteristics. Although there are restrictions on the spectral bandwidth allowed in the imaging process, the method can nonetheless be applied to multispectral imagery. Adoption of the method to the imaging of astronomical subjects through the turbulent atmosphere is also discussed.

Inverse Synthetic Aperture Radar Imaging With MATLAB Algorithms An authoritative work on Synthetic Aperture Radar system engineering, with key focus on high resolution imaging, moving target indication, and system engineering technology Synthetic Aperture Radar (SAR) is a powerful microwave remote sensing technique that is used to create high resolution two or three-dimensional representations of objects, such as landscapes, independent of weather conditions and sunlight illumination. SAR technology is a multidisciplinary field that involves microwave technology, antenna technology, signal processing, and image information processing. The use of SAR technology continues grow at a rapid pace in a variety of applications such as high-resolution wide-swath observation, multi-azimuth information acquisition, high-temporal information acquisition, 3-D terrain mapping, and image quality improvement. Design Technology of Synthetic Aperture Radar provides detailed coverage of the fundamental concepts, theories, technology, and design of SAR systems and sub-systems. Supported by the author’s over two decades of research and practice experience in the field, this in-depth volume systematically describes SAR design and presents the latest research developments. Providing examination of all topics relevant to SAR—from radar and antenna system design to receiver technology and signal and image information processing—this comprehensive resource: Provides wide-ranging, up-to-date examination of all major topics related to SAR science, systems, and software Includes guidelines to conduct grounding system designs and analysis Offers coverage of all SAR algorithm classes and detailed SAR algorithms suitable for enabling software implementations Surveys SAR and computed imaging literature of the last sixty years Emphasizes high resolution imaging, moving target indication, and system engineering Design Technology of Synthetic Aperture Radar is indispensable for graduate students majoring in SAR system design, microwave antenna, signal and information processing as well as engineers and technicians involved in SAR system techniques.

Digital Signal Processing Fundamentals This open access book focuses on the practical application of electromagnetic polarimetry principles in Earth remote sensing with an educational purpose. In the last decade, the operations from fully polarimetric synthetic aperture radar such as the Japanese ALOS/PalSAR, the Canadian Radarsat-2 and the German TerraSAR-X and their easy data access for scientific use have developed further the research and data applications at L,C and X band. As a consequence, the wider distribution of polarimetric data sets across the remote sensing community boosted
activity and development in polarimetric SAR applications, also in view of future missions. Numerous experiments with real data from spaceborne platforms are shown, with the aim of giving an up-to-date and complete treatment of the unique benefits of fully polarimetric synthetic aperture radar data in five different domains: forest, agriculture, cryosphere, urban and oceans.

Synthetic Aperture Radar Synthetic Aperture Radar Processing simply and methodically presents principles and techniques of Synthetic Aperture Radar (SAR) image generation by analyzing its system transfer function. The text considers the full array of operation modes from strip to scan, emphasizes processing techniques, enabling the design of operational SAR codes. A simple example then follows. This book will be invaluable to all SAR scientists and engineers working in the field. It may be used as the basis for a course on SAR image generation or as a reference book on remote sensing. It contains a wide spectrum of information presented with clarity and rigor.

Geosynchronous SAR: System and Signal Processing This book provides a full representation of Inverse Synthetic Aperture Radar (ISAR) imagery, which is a popular and important radar signal processing tool. The book covers all possible aspects of ISAR imaging. The book offers a fair amount of signal processing techniques and radar basics before introducing the inverse problem of ISAR and the forward problem of Synthetic Aperture Radar (SAR). Important concepts of SAR such as resolution, pulse compression and image formation are given together with associated MATLAB codes. After providing the fundamentals for ISAR imaging, the book gives the detailed imaging procedures for ISAR imaging with associated MATLAB functions and codes. To enhance the image quality in ISAR imaging, several imaging tricks and fine-tuning procedures such as zero-padding and windowing are also presented. Finally, various real applications of ISAR imagery, like imaging the antenna-platform scattering, are given in a separate chapter. For all these algorithms, MATLAB codes and figures are included. The final chapter considers advanced concepts and trends in ISAR imaging.

Digital Processing of Synthetic Aperture Radar Data Analyzes and discusses the operating principle, signal processing method, and experimental results of this advanced radar technology. This book systematically discusses the operating principle, signal processing method, target measurement technology, and experimental results of a new kind of radar called synthetic impulse and aperture radar (SIAR). The purpose is to help readers acquire an insight into the concept and principle of the SIAR, to know its operation mode, signal processing method, the difference between the traditional radar and itself, the designing ideals, and the developing method. It includes 10 chapters. Chapter 1 gives an introduction to the basic principle of SIAR and its characteristic of four antis. Chapter 2 introduces the operating principles and system constitution of SIAR. Chapter 3 presents the main waveforms and the corresponding signal processing methods. Chapter 4 is about the long-time integration technique. Chapter 5 shows the high-accuracy measurement and tracking of 4D parameters of target in SIAR. The range-angle coupling and decoupling are introduced in Chapter 6, where a criteria for transmit frequency optimization of array elements is studied to overcome the coupling among range, azimuth and elevation. In Chapter 7, detection and tracking of targets in strong interference background is investigated. Chapter 8 analyzes quantitatively the influence of array error on the tracking accuracy of SIAR. Expansion of impulse and aperture synthesis to HF band and microwave band are introduced respectively in Chapter 9 and Chapter 10. The operating principle of the novel bi-static surface wave radar system, as well as the experimental system and the experimental results are included in Chapter 9. Written by a highly experienced author
with extensive knowledge of SIAR (Chen), the book can be used as a reference for engineering technical personnel and scientific research personnel working in the research of SIAR, MIMO radar, digital radar or other new type of radar. It can also be a reference for teachers and students in universities who engage in related professional work. Details the operating principle, signal processing method, target measurement technology, and experimental results of synthetic impulse and aperture radar (SIAR) Expands the technique of impulse and aperture synthesis from the VHF band to the HF band and the microwave band Written by a leading author with many years’ research and practical experience in sparse array SIAR, a typical MIMO radar Engineers, researchers and postgraduates working in radar engineering will find this an invaluable resource.

Processing of Synthetic Aperture Radar (SAR) Images The first book to present a systematic and coherent picture of MIMO radars Due to its potential to improve target detection and discrimination capability, Multiple-Input and Multiple-Output (MIMO) radar has generated significant attention and widespread interest in academia, industry, government labs, and funding agencies. This important new work fills the need for a comprehensive treatment of this emerging field. Edited and authored by leading researchers in the field of MIMO radar research, this book introduces recent developments in the area of MIMO radar to stimulate new concepts, theories, and applications of the topic, and to foster further cross-fertilization of ideas with MIMO communications. Topical coverage includes: Adaptive MIMO radar Beam pattern analysis and optimization for MIMO radar MIMO radar for target detection, parameter estimation, tracking, association, and recognition MIMO radar prototypes and measurements Space-time codes for MIMO radar Statistical MIMO radar Waveform design for MIMO radar Written in an easy-to-follow tutorial style, MIMO Radar Signal Processing serves as an excellent course book for graduate students and a valuable reference for researchers in academia and industry.

Principles of Synthetic Aperture Radar Imaging A self-contained approach to DSP techniques and applications in radar imaging The processing of radar images, in general, consists of three major fields: Digital Signal Processing (DSP): antenna and radar operation; and algorithms used to process the radar images. This book brings together material from these different areas to allow readers to gain a thorough understanding of how radar images are processed. The book is divided into three main parts and covers: * DSP principles and signal characteristics in both analog and digital domains, advanced signal sampling, and interpolation techniques * Antenna theory (Maxwell equation, radiation field from dipole, and linear phased array), radar fundamentals, radar modulation, and target-detection techniques (continuous wave, pulsed Linear Frequency Modulation, and stepped Frequency Modulation) * Properties of radar images, algorithms used for radar image processing, simulation examples, and results of satellite image files processed by Range-Doppler and Stolt interpolation algorithms The book fully utilizes the computing and graphical capability of MATLAB® to display the signals at various processing stages in 3D and/or cross-sectional views. Additionally, the text is complemented with flowcharts and system block diagrams to aid in readers' comprehension. Digital Signal Processing Techniques and Applications in Radar Image Processing serves as an ideal textbook for graduate students and practicing engineers who wish to gain firsthand experience in applying DSP principles and technologies to radar imaging.

Digital Signal Processing Techniques and Applications in Radar Image Processing This book chiefly addresses the analysis and design of geosynchronous synthetic aperture radar (GEO SAR) systems, focusing on the algorithms, analysis, methods used to
compensate for ionospheric influences, and validation experiments for Global Navigation Satellite Systems (GNSS). Further, it investigates special problems in the GEO SAR context, such as curved trajectories, the Earth’s rotation, the ‘non-stop-and-go’ model, high-order Doppler parameters, temporal-variant ionospheric errors etc. These studies can also be extended to SAR with very high resolution and long integration time. Given the breadth and depth of its coverage, scientists and engineers in SAR and advanced graduate students in related areas will greatly benefit from this book.

Radar Remote Sensing of Urban Areas Describing a field that has been transformed by the recent availability of data from a new generation of space and airborne systems, the authors offer a synthetic geometrical approach to the description of synthetic aperture radar, one that addresses physicists, radar specialists, as well as experts in image processing.

Polarimetric Synthetic Aperture Radar

Processing of SAR Data Synthetic aperture radar (SAR) is a well-known remote sensing technique, but conventional single-antenna SAR is inherently limited by the minimum antenna area constraint. Although there are still technical issues to overcome, multi-antenna SAR offers many benefits, from improved system gain to increased degrees-of-freedom and system flexibility. Multi-Antenna Synthetic Aperture Radar explores the potential and challenges of using multi-antenna SAR in microwave remote sensing applications. These applications include high-resolution imaging, wide-swath remote sensing, ground moving target indication, and 3-D imaging. The book pays particular attention to the signal processing aspects of various multi-antenna SAR from a top-level system perspective. Explore Recent Extensions of Synthetic Aperture Radar Systems The backbone of the book is a series of innovative microwave remote sensing approaches developed by the author. Centered around multi-antenna SAR imaging, these approaches address specific challenges and potential problems in future microwave remote sensing. Chapters examine single-input multiple-output (SIMO) multi-antenna SAR, including azimuth and elevation multi-antenna SAR, and multiple-input multiple-output (MIMO) SAR. The book details the corresponding system scheme, signal models, time/phase/spatial synchronization methods, and high-precision imaging algorithms. It also investigates their potential applications. Introductory Tutorials and Novel Approaches in Multi-Antenna SAR Imaging Rigorous and self-contained, this is a unique reference for researchers and industry professionals working with microwave remote sensing, SAR imaging, and radar signal processing. In addition to novel approaches, the book also presents tutorials that serve as an introduction to multi-antenna SAR imaging for those who are new to the field.

Inverse Synthetic Aperture Radar Imaging

Synthetic Aperture Radar Processing

Copyright code: 03ae1d6c300b15dc7424ed3a86fd93a1